Toeplitz and Hankel Operators on Weighted Bergman Spaces
2020
https://doi.org/10.56082/ANNALSARSCIMATH.2020.1-2.99Abstract
In this paper we have shown that if S ∈ L(L 2 a (dA α )) and Θ ST (x, y)(K (α) (x, y)) 2 for all x, y ∈ D and for all T ∈ L(L 2 a (dA α )), then S = T
References (9)
- J.B. Conway. A course in functional analysis. 2nd edition, Springer- Verlag, 1990.
- M. Engliś. Functions invariant under the Berezin transform. J. Funct. Anal. 121 (1994), 233-254.
- N.S. Faour. A theorem of Nehari type. Illinois J. Math. 35 (1991), 533-535.
- H. Hedenmalm, B. Korenblum and K. Zhu. Theory of Bergman spaces. Graduate texts in Mathematics 199, Springer -Verlag, New York, 2000.
- S. Krantz. Function theory of several complex variables. 2nd edition, Amer. Math. Soc., 2001.
- J. Lee. Some properties of the weighted Berezin transform in the unit disc and bidisc. Glob. J. Pure Appl. Math.. 14(2) (2018), 275-283.
- W. Rudin. Function theory in the unit ball of C n . Springer -Verlag, New York Inc., 1980.
- W. Rudin. Real and complex analysis. 3rd edition, McGraw-Hill, New York Inc., 1987.
- K. Zhu. Operator theory in function spaces. Monographs and Textbooks in Pure and Applied Mathematics, Marcell Dekker, Inc. 139, New York and Basel, 1990.