Academia.eduAcademia.edu

Outline

Remnant for all black objects due to gravity's rainbow

2015, Nuclear Physics B

Abstract

We argue that a remnant is formed for all black objects in gravity's rainbow. This will be based on the observation that a remnant depends critically on the structure of the rainbow functions, and this dependence is a model independent phenomena. We thus propose general relations for the modified temperature and entropy of all black objects in gravity's rainbow. We explicitly check this to be the case for Kerr, Kerr-Newman-dS, charged-AdS, and higher dimensional Kerr-AdS black holes. We also try to argue that a remnant should form for black Saturn in gravity's rainbow. This work extends our previous results on remnants of Schwarzschild black holes [1] and black rings [2].

References (58)

  1. A. F. Ali, Black Hole Remnant from Gravity's Rainbow, Phys.Rev. D89 (2014) 104040, [arXiv:1402.5320].
  2. A. F. Ali, M. Faizal, and M. M. Khalil, Remnants of black rings from gravity's rainbow, JHEP 1412 (2014) 159, [arXiv:1409.5745].
  3. P. Horava, Quantum Gravity at a Lifshitz Point, Phys.Rev. D79 (2009) 084008, [arXiv:0901.3775].
  4. P. Horava, Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point, Phys.Rev.Lett. 102 (2009) 161301, [arXiv:0902.3657].
  5. D. Amati, M. Ciafaloni, and G. Veneziano, Can Space-Time Be Probed Below the String Size?, Phys.Lett. B216 (1989) 41.
  6. L. J. Garay, Quantum gravity and minimum length, Int.J.Mod.Phys. A10 (1995) 145-166, [gr-qc/9403008].
  7. A. F. Ali, S. Das, and E. C. Vagenas, Discreteness of Space from the Generalized Uncertainty Principle, Phys.Lett. B678 (2009) 497-499, [arXiv:0906.5396].
  8. A. F. Ali, S. Das, and E. C. Vagenas, A proposal for testing Quantum Gravity in the lab, Phys.Rev. D84 (2011) 044013, [arXiv:1107.3164].
  9. G. 't Hooft, Quantization of point particles in (2+1)-dimensional gravity and space-time discreteness, Class.Quant.Grav. 13 (1996) 1023-1040, [gr-qc/9601014].
  10. V. A. Kostelecky and S. Samuel, Spontaneous Breaking of Lorentz Symmetry in String Theory, Phys.Rev. D39 (1989) 683.
  11. G. Amelino-Camelia, J. R. Ellis, N. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998) 763-765, [astro-ph/9712103].
  12. R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys.Rev. D59 (1999) 124021, [gr-qc/9809038].
  13. S. M. Carroll, J. A. Harvey, V. A. Kostelecky, C. D. Lane, and T. Okamoto, Noncommutative field theory and Lorentz violation, Phys.Rev.Lett. 87 (2001) 141601, [hep-th/0105082].
  14. J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys.Rev.Lett. 88 (2002) 190403, [hep-th/0112090].
  15. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int.J.Mod.Phys. D11 (2002) 35-60, [gr-qc/0012051].
  16. J. Magueijo and L. Smolin, Gravity's rainbow, Class.Quant.Grav. 21 (2004) 1725-1736, [gr-qc/0305055].
  17. J.-J. Peng and S.-Q. Wu, Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory, Gen.Rel.Grav. 40 (2008) 2619-2626, [arXiv:0709.0167].
  18. P. Galan and G. A. Mena Marugan, Entropy and temperature of black holes in a gravity's rainbow, Phys.Rev. D74 (2006) 044035, [gr-qc/0608061].
  19. Y. Ling, X. Li, and H.-b. Zhang, Thermodynamics of modified black holes from gravity's rainbow, Mod.Phys.Lett. A22 (2007) 2749-2756, [gr-qc/0512084].
  20. H. Li, Y. Ling, and X. Han, Modified (A)dS Schwarzschild black holes in Rainbow spacetime, Class.Quant.Grav. 26 (2009) 065004, [arXiv:0809.4819].
  21. A. F. Ali, M. Faizal, and M. M. Khalil, Absence of Black Holes at LHC due to Gravity's Rainbow, Phys.Lett. B743 (2014) 295-300, [arXiv:1410.4765].
  22. M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini, Hawking radiation as tunneling for extremal and rotating black holes, JHEP 0505 (2005) 014, [hep-th/0503081].
  23. Z. Ze Ma, Hawking Temperature of Kerr-Newman-AdS black hole from tunneling, Phys.Lett. B666 (2008) 376-381, [arXiv:0908.0357].
  24. R. M. Wald, General relativity. University of Chicago press, 2010.
  25. L. Zhao, Tunnelling through black rings, Commun.Theor.Phys. 47 (2007) 835-842, [hep-th/0602065].
  26. R. Garattini and G. Mandanici, Particle propagation and effective space-time in Gravity's Rainbow, Phys.Rev. D85 (2012) 023507, [arXiv:1109.6563].
  27. C. Leiva, J. Saavedra, and J. Villanueva, The Geodesic Structure of the Schwarzschild Black Holes in Gravity's Rainbow, Mod.Phys.Lett. A24 (2009) 1443-1451, [arXiv:0808.2601].
  28. A. F. Ali, M. Faizal, and B. Majumder, Absence of an Effective Horizon for Black Holes in Gravity's Rainbow, Europhys.Lett. 109 (2015), no. 2 20001, [arXiv:1406.1980].
  29. A. Awad, A. F. Ali, and B. Majumder, Nonsingular Rainbow Universes, JCAP 1310 (2013) 052, [arXiv:1308.4343].
  30. J. D. Barrow and J. Magueijo, Intermediate inflation from rainbow gravity, Phys.Rev. D88 (2013), no. 10 103525, [arXiv:1310.2072].
  31. C.-Z. Liu and J.-Y. Zhu, Hawking radiation and black hole entropy in a gravity ' s rainbow, Gen.Rel.Grav. 40 (2008) 1899-1911, [gr-qc/0703055].
  32. A. F. Ali and M. M. Khalil, A Proposal for Testing Gravity's Rainbow, arXiv:1408.5843.
  33. G. Amelino-Camelia, J. R. Ellis, N. Mavromatos, and D. V. Nanopoulos, Distance measurement and wave dispersion in a Liouville string approach to quantum gravity, Int.J.Mod.Phys. A12 (1997) 607-624, [hep-th/9605211].
  34. G. Amelino-Camelia, J. R. Ellis, N. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998) 763-765, [astro-ph/9712103].
  35. G. Amelino-Camelia and T. Piran, Planck scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV gamma paradoxes, Phys.Rev. D64 (2001) 036005, [astro-ph/0008107].
  36. T. Kifune, Invariance violation extends the cosmic ray horizon?, Astrophys.J. 518 (1999) L21-L24, [astro-ph/9904164].
  37. R. Protheroe and H. Meyer, An Infrared background TeV gamma-ray crisis?, Phys.Lett. B493 (2000) 1-6, [astro-ph/0005349].
  38. R. Aloisio, P. Blasi, P. L. Ghia, and A. F. Grillo, Probing the structure of space-time with cosmic rays, Phys.Rev. D62 (2000) 053010, [astro-ph/0001258].
  39. R. C. Myers and M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory, Phys.Rev.Lett. 90 (2003) 211601, [hep-ph/0301124].
  40. G. Amelino-Camelia, Quantum-Spacetime Phenomenology, Living Rev.Rel. 16 (2013) 5, [arXiv:0806.0339].
  41. R. J. Adler, P. Chen, and D. I. Santiago, The Generalized uncertainty principle and black hole remnants, Gen.Rel.Grav. 33 (2001) 2101-2108, [gr-qc/0106080].
  42. M. Cavaglia, S. Das, and R. Maartens, Will we observe black holes at LHC?, Class.Quant.Grav. 20 (2003) L205-L212, [hep-ph/0305223].
  43. A. Medved and E. C. Vagenas, When conceptual worlds collide: The GUP and the BH entropy, Phys.Rev. D70 (2004) 124021, [hep-th/0411022].
  44. G. Amelino-Camelia, M. Arzano, and A. Procaccini, Severe constraints on loop-quantum-gravity energy-momentum dispersion relation from black-hole area-entropy law, Phys.Rev. D70 (2004) 107501, [gr-qc/0405084].
  45. Y. Ling, B. Hu, and X. Li, Modified dispersion relations and black hole physics, Phys.Rev. D73 (2006) 087702, [gr-qc/0512083].
  46. P. Chen, Y. C. Ong, and D.-h. Yeom, Black Hole Remnants and the Information Loss Paradox, arXiv:1412.8366.
  47. N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies 2 (2014) 89-159, [arXiv:1401.2586].
  48. R. Monteiro, M. J. Perry, and J. E. Santos, Thermodynamic instability of rotating black holes, Phys.Rev. D80 (2009) 024041, [arXiv:0903.3256].
  49. Y. Sekiwa, Thermodynamics of de Sitter black holes: Thermal cosmological constant, Phys.Rev. D73 (2006) 084009, [hep-th/0602269].
  50. G. Gibbons, H. Lu, D. N. Page, and C. Pope, The General Kerr-de Sitter metrics in all dimensions, J.Geom.Phys. 53 (2005) 49-73, [hep-th/0404008].
  51. G. Gibbons, M. Perry, and C. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class.Quant.Grav. 22 (2005) 1503-1526, [hep-th/0408217].
  52. H. Elvang and P. Figueras, Black Saturn, JHEP 0705 (2007) 050, [hep-th/0701035].
  53. H. Elvang, R. Emparan, and P. Figueras, Phases of five-dimensional black holes, JHEP 0705 (2007) 056, [hep-th/0702111].
  54. R. Penrose, Gravitational collapse: The role of general relativity, Riv.Nuovo Cim. 1 (1969) 252-276.
  55. P. Nicolini and E. Winstanley, Hawking emission from quantum gravity black holes, JHEP 1111 (2011) 075, [arXiv:1108.4419].
  56. J. Mureika, P. Nicolini, and E. Spallucci, Could any black holes be produced at the LHC?, Phys.Rev. D85 (2012) 106007, [arXiv:1111.5830].
  57. P. Nicolini, Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review, Int.J.Mod.Phys. A24 (2009) 1229-1308, [arXiv:0807.1939].
  58. M. Bleicher and P. Nicolini, Mini-review on mini-black holes from the mini-Big Bang, Astron. Nachr. 335 (2014) 605-611, [arXiv:1403.0944].