Metamaterials in 5G Antenna Designs: A Bibliometric Survey
2021
Abstract
The demand of high gain and wideband compact antenna designs are gaining importance to fulfil the need of 5G communication systems. This has opened the doors for the researchers to explore 5G antennas incorporating metamaterials as they can meet the requirement of high gain and wideband compact antennas. Overview of various metamaterial-based antenna designs including Electromagnetic Band Gap (EBG), artificial Magnetic Conductor (AMC), Frequency Selective Surface (FSS) and Partially Reflective Surface (PRS) are discussed in the paper. The paper primarily focuses on bibliometric survey of various types of 5G metamaterial antennas in terms of number of documents published, leading universities actively involved in the related research, distribution of documents in different areas, major contribution of authors and leading journal publishing the documents. Scopus database from 1st September 2014 till date is used to carry out this bibliometric survey. The statistical data presented in ...
References (55)
- References: Zheng D.Z, and Chu Q.X. 2017 ''A wideband dual-polarized antenna with two independently controllable resonant modes and its array for base-station applications,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2014-2017.
- Wang, C., Chen, Y., and Yang, S. 2018. ''Dual-band dual-polarized antenna array with flat- top and sharp cutoff radiation patterns for 2G/3G/LTE cellular bands,'' IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 5907-5917.
- Cui, Y., Li, R., and Wang, P. 2013. ''Novel dual-broadband planar antenna and its array for 2G/3G/LTE base stations,'' IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1132-1139.
- Tang, Z., Liu, J., Cai, M., Wang, J., and Yin, Y. 2018. ''A wideband differentially fed dual- polarized stacked patch antenna with tuned slot excitations,'' IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 2055-2060.
- Huang, H., Li, X., and Liu, Y. 2018. ''A novel vector synthetic dipole antenna and its common aperture array,'' IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 3183-3188.
- Ding, C., Sun, H., Ziolkowski, R., and Guo, Y. 2018. ''A dual layered loop array antenna for base stations with enhanced cross-polarization discrimination,'' IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6975-6985.
- Zhang, Q., and Gao, Y. 2018. ''A compact broadband dual-polarized antenna array for base stations,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 6, pp. 1073-1076.
- Chu, Q., Wen, D., and Luo, Y. 2015. ''A broadband ±45• dual-polarized antenna with Y- Shaped feeding lines,'' IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 483-490.
- Ding, C., Zhang, X., Zhang, Y., Pan, Y., and Xue, Q. 2018 ''Compact broadband dual- polarized filtering dipole antenna with high selectivity for base-station applications,'' IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 5747-5756.
- Cui, Y., Wu, L., and Li, R. 2018. ''Bandwidth enhancement of a broadband dual-polarized antenna for 2G/3G/4G and IMT base stations,'' IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7368-7373.
- Liang Z., Lu, C., Li, Y., Liu, J., and Long, Y. 2018. ''A broadband dual-polarized antenna with front-to-back ratio enhancement using semicylindrical side-walls,'' IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3735-3740.
- Kumar, P., Ali, T., Pai, M.M.M., 2021. "Electromagnetic Metamaterials: A New Paradigm of Antenna Design," IEEE Access.
- Dixit, Amruta S., and Sumit Kumar. 2020a. "A Survey of Performance Enhancement Techniques of Antipodal Vivaldi Antenna." IEEE Access 8: 45774-96.
- Dixit, Amruta S, and Sumit Kumar. 2020b. "A Miniaturized Antipodal Vivaldi Antenna for 5G Communication Applications." In 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 800-803.
- Kumar S., Dixit A., Malekar R., Raut H., Shevada L. 2020. "Fifth Generation Antennas : A Comprehensive Review of Design and Performance Enhancement Techniques." IEEE Access 8: 163568-93.
- Picchio, V., Cammisotto V., Pagano F., Carnevale R., and Chimenti. 2020. "Metamaterials in Application to Improve Antenna Parameters," in: Intechopen. pp. 1-15.
- Phan DT., Phan HL., and Nguyen TQH. 2016. "A miniaturization of microstrip antenna using negative permittivity metamaterial based on CSRR loaded ground for WLAN applications," Journal of Science and Technology. Pp. 689-697.
- Krzysztofik WJ., 2014a. "Antenna properties improvement by means of modern technology- Metamaterials as a modified substrate and/or superstrate," In 20th International Conference on Microwave, Radar and Wireless Communications. Vol. 2. Gdansk, Poland: MIKON. pp. 637-640.
- Krzysztofik WJ. 2013b. "Fractal geometry in electromagnetics applications-From antenna to metamaterials," Microwave Review., 19(2):3-14.
- Krzysztofik WJ., 2017c. "Fractals in antennas and metamaterials applications," INTECHopen science, open minds. In: Brambila F, editor. Fractal Analysis-Applications in Physics, Engineering and Technology. Rijeka, pp. 45-81.
- Wu S., Yi Y., Yu Z., Huang X., and Yang H. 2016. "A zero-index metamaterial for gain and directivity enhancement of tapered slot antenna," J Electromagn Waves Appl 30(15): pp 1993-2002
- Bhaskar M., Johari E., Akhter Z., and Akhtar M J. 2016. "Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial," Microw Opt Techn Lett 58(1):233-238.
- Si L., Zhu W., and Sun H. 2015a. "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wireless Propag Lett vol 12, pp 305-308.
- Si L., 2015b. "A uniplanar triple-band dipole antenna using complementary capacitively loaded loop," IEEE Antennas Wireless Propag Lett vol 14, pp 743-746.
- Dadgarpour A., Zarghooni B., Virdee S., Denidni A., 2016. "Single end-fire antenna for dualbeam and broad beamwidth operation at 60 GHz by artificially modifying the permittivity of the antenna substrate," IEEE Trans Antennas Propag 64(9):4068-4073.
- Li J., Zeng Q., Liu R., Denidni TA., 2017. "Beam-tilting antenna with negative refractive index metamaterial loading," IEEE Antennas Wireless Propag Lett 16, pp 2030-2033.
- Jiang H., Si L-M., Hu W., Lv X. 2019. "A symmetrical dual-beam Bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics J 11(1).
- Sadananda G., Abegaonkar P., Koul K. 2019. "Gain equalized shared-aperture antenna using dual-polarized ZIM for mmWave 5G base stations," IEEE Antennas Wireless Propag Lett 18(6), pp 1100-1104.
- Dixit A., Kumar S. 2020c. "The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G communication applications," Microw Opt Technol Lett 62, pp 2365-2374.
- Shevada L., Raut H.D., Malekar R., Kumar S. 2021."Comparative Study of Different Beamforming Techniques for 5G: A Review." In: Ranganathan G., Chen J., Rocha Á. (eds) Inventive Communication and Computational Technologies. Lecture Notes in Networks and Systems, vol 145. Springer, Singapore.
- Raut H.D., Shevada L., Malekar R., Kumar S. 2021. "High Gain Wideband Antennas for 5G Applications: A Review." In: Ranganathan G., Chen J., Rocha Á. (eds) Inventive Communication and Computational Technologies. Lecture Notes in Networks and Systems, vol 145. Springer, Singapore.
- Yuan B., Zheng Y., Zhang X.,, You B., and Luo G., 2017. ''A bandwidth and gain enhancement for microstrip antenna based on metamaterial,'' Microw. Opt. Technol. Lett., vol. 59, no. 12, pp. 3088-3093.
- Urul B., 2020. ''Gain enhancement of microstrip antenna with a novel DNG material,'' Microw. Opt. Technol. Lett., vol. 62, no. 4, pp. 1824-1829.
- Patel S., and Argyropoulos C., 2016. ''Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators,'' J. Electromagn. Waves Appl., vol. 30, no. 7, pp. 945-961.
- Meriche M., Attia H., Messai A., Mitu S., and Denidni T., 2019.''Directive wideband cavity antenna with single-layer meta-superstrate,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 9, pp. 1771-1774, Sep. 2019.
- Verma A., Singh A., Srivastava N., Patil S., and Kanaujia B., 2020. ''Hexagonal ring electromagnetic band gap-based slot antenna for circular polarization and performance enhancement,'' Microw. Opt. Technol. Lett., vol. 62, no. 7, pp. 2576-2587.
- Alibakhshikenari M., Khalily M., Virdee B., See C., Abd-Alhameed R., and Limiti E., 2019. ''Mutual coupling suppression between two closely placed microstrip patches using EM- bandgap metamaterial fractal loading,'' IEEE Access, vol. 7, pp. 23606-23614, 2019.
- Thummaluru S., Kumar R., and Chaudhary R., 2018''Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface,'' IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1595-1600.
- Hassan T., Khan M., Attia H., and Sharawi M., 2018''An FSS based correlation reduction technique for MIMO antennas,'' IEEETrans. Antennas Propag., vol. 66, no. 9, pp. 4900- 4905.
- Akbari M., Ali M., Farahani M., Sebak A., and Denidni T., 2017 ''Spatially mutual coupling reduction between CP-MIMO antennas using FSS superstrate,'' Electron. Lett., vol. 53, no. 8, pp. 516-518.
- Zhu J., Li S., Liao S., and Xue Q., 2018. ''Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor,'' IEEE AntennasWire-less Propag. Lett., vol. 17, no. 3, pp. 458-462.
- Khan M., Capobianco A., Asif S., Anagnostou D., Shubair R., and Braaten B., 2017 ''A compact CSRR-enabled UWB diversity antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 808-812.
- Sambandam P., Kanagasabai M., Ramadoss S., Natarajan R., Alsath M., Shanmuganathan S., Sindhadevi M., and Palaniswamy S., 2020. ''Compact monopole antenna backed with fork-slotted EBG for wearable applications,'' IEEE AntennasWireless Propag. Lett., vol. 19, no. 2, pp. 228-232.
- Zada M., Shah I., and Yoo H., 2020. ''Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for mul-tiple biomedical applications,'' IEEE Trans. Antennas Propag., vol. 68, no. 2, pp. 1140-1144.
- Gulur Sadananda, K., Abegaonkar, M.P., Koul, S.K., 2019. "Gain Equalized Shared-Aperture Antenna Using Dual-Polarized ZIM for mmWave 5G Base Stations," IEEE Antennas and Wireless Propagation Letters 18, pp. 1100-1104.
- Bonefacic D., and Bartolic J., 2012. ''Small antennas: Miniaturization tech-niques and applications,'' Automatika, vol. 53, no. 1, pp. 20-30.
- Xi B., Li Y., and Long Y., 2019. ''A miniaturized periodic microstrip leaky wave antenna with shorting pins,'' Int. J. Antennas Propag., pp. 1-7.
- Jagtap S., Chaudhari A., Chaskar N., Kharche S., and Gupta R K.,2018. "A Wideband Microstrip Array Design Using RIS and PRS Layers," IEEE Antennas and Wireless Propagation Letters vol. 17, pp. 509-512.
- Wang, N., J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, 2015. "Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates," IEEE Antennas and Wireless Propagation Letters, Vol. 14, pp. 229-232.
- Dixit, A. S., Kumar, S., Urooj, S., and Malibari, A., 2021. "A Highly Compact Antipodal Vivaldi Antenna Array for 5G Millimeter Wave Applications", Sensors, 21, 2360.
- Malekar R., Shevada L K., Raut, H D., Dixit A S., and Kumar S., 2020. "MIMO antenna for Fifth Generation mm-Wave Applications: A Bibliometric Survey". Library Philosophy and Practice (e-journal). 4854.
- Shevada L K., Raut, H D., Malekar, R, R., Dixit A, S., and Kumar, S., 2020. "A Bibliometric Survey on Ultra Wideband Multiple Input Multiple Output Antenna with Improved Isolation". Library Philosophy and Practice (e-journal). 4841.
- Dixit A, S., Shevada L K., Raut, H D., Malekar, R, R., and Kumar, S., 2020. "Fifth Generation Antennas: A Bibliometric Survey and Future Research Directions" (2020). Library Philosophy and Practice (e-journal). 4575.
- Gunjal A., and Kumar S., 2020. "Gain Enhancement in U-Slotted Broadband Dual Circularly Polarized Antenna for S-Band Radar Applications." International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, pp. 124-128.
- Bhadoria B., Kumar S., 2018. "A Novel Omnidirectional Triangular Patch Antenna Array Using Dolph Chebyshev Current Distribution for C-Band Applications," Progress In Electromagnetics Research M, Vol. 71, pp. 75-84.