Academia.eduAcademia.edu

Outline

Highly Relativistic Deep Electrons and the Dirac equation

2019, Journal of Condensed Matter Nuclear Science- Proceed. of ICCF22 Conf., Assisi, Itzly

https://doi.org/10.13140/RG.2.2.12424.16646

Abstract

After analyzing, in the literature, deep orbit results of relativistic quantum equations, we studied them in a semi-classical way, by looking for a local minimum of total energy of an electron near the nucleus, while respecting the Heisenberg Uncertainty Relation (HUR). Now, while using new information thanks to semi-classical computations, we come back to deep electrons as solutions of the Dirac equation, to solve several important and subtle outstanding issues, such as the continuity of derivatives of wave-functions, a spectral problem about the energy levels associated with the wave-functions to compute, as well as essential relativistic and energy parameters of the solutions. We thus obtain a better completeness of the solutions. Finally, we give some approaches on the probability of the presence of Electron Deep Orbit (EDO) states in H atom.

References (35)

  1. A. Meulenberg and K.P. Sinha, Deep-electron orbits in cold fusion, 17th Int. Conf. on Condensed Matter Nu- clear Science, Daejeon, South Korea, 12-17 August, 2012, J. Condensed Matter Nucl. Sci. 13 (2014) 368-377, http://coldfusioncommunity.net/pdf/jcmns/v13/368_JCMNS-Vol13.pdf.
  2. J.L. Paillet and A. Meulenberg, Special relativity: the source of the electron deep orbits, Found. Phys. 47(2) (2017) 256-264.
  3. A. Meulenberg and J.L. Paillet, Nuclear-waste remediation with femto-atoms and femto-molecules, ICCF-21, 21st Int. Conf. for Condensed Matter Nuclear Science, 3-8 June 2018, Fort Collins, CO, USA, J. Condensed Matter Nucl. Sci. 29 (2019) 353-371, http://coldfusioncommunity.net/pdf/jcmns/v29/353_JCMNS-Vol29.pdf, https://www.youtube.com/watch?v = J6zQXb-L7L8&t = 136s .
  4. J.L. Paillet and A. Meulenberg, Electron deep orbits of the hydrogen atom, Proc. 11th Int. Workshop on Hy- drogen Loaded Metals, Airbus Toulouse, 15-16 Oct. 2015, J. Condensed Matter Nucl. Sci. 23 (2017) 62-84,. http://coldfusioncommunity.net/pdf/jcmns/v23/62_JCMNS-Vol23.pdf.
  5. J.A., Maly and J. Va'vra, Electron transitions on deep Dirac levels II, Fusion Sci.Technol. 27(1) (1995) 59-70, http://www.ans.org/pubs/journals/fst/a_30350.
  6. J.L. Paillet and A. Meulenberg, Advance on electron deep orbits of the hydrogen atom, Proc. of ICCF20, 20th Conf. on Cond. Matter Nuclear Science, Sendai, Japan, 2-7 October 2016, J. Condensed Matter Nucl. Sci. 24 (2017) 258-277, http://coldfusioncommunity.net/pdf/jcmns/v24/258_JCMNS-Vol24.pdf.
  7. J.L. Paillet and A. Meulenberg, deepening questions about electron deep orbits of the hydrogen atom, Proc. 12th Int. Workshop on Hydrogen Loaded Metals, Asti (Italy), 5-9 June 2017, J. Condensed Matter Nucl. Sci. 26 (2018) 56-68, http://coldfusioncommunity.net/pdf/jcmns/v26/56_JCMNS-Vol26.pdf, http://viXra.org/abs/1707.0284.
  8. J.L. Paillet and A. Meulenberg, On highly relativistic deep electrons, Proc. of ICCF21, 21th Conf. on Cond. Mat- ter Nuclear Sci. Fort Collins, CO, USA, 3-8 June 2018, J. Condensed Matter Nucl. Sci. 29 (2019) 472-492, http://coldfusioncommunity.net/pdf/jcmns/v29/472_JCMNS-Vol29.pdf.
  9. J.A. Maly and J. Va'vra, Electron transitions on deep Dirac levels I, Fusion Sci.Technol. 24 (3) (1993) 307-318, http://www.ans.org/pubs/journals/fst/a_30206.
  10. J.L. Paillet and A. Meulenberg, Basis for electron deep orbits of the hydrogen atom, Proc. of ICCF19, 19th Int. Conf. on Cond. Matter Nuclear Science, Padua, Italy, 13-17 April 2015, J. Condensed Matter Nucl. Sci. 19 (2016) 230-243, 2016, http://coldfusioncommunity.net/pdf/jcmns/v19/230_JCMNS-Vol19.pdf
  11. J.L. Paillet and A. Meulenberg, Arguments for the Anomalous Solutions of the Dirac equations , J. Condensed Matter Nucl. Sci. 18 (2016) 50-75, http://coldfusioncommunity.net/pdf/jcmns/v18/50_JCMNS-Vol. 18. pdf.
  12. S. Fluegge, Practical Quantum Mechanics, Vol. 2, Springer, Berlin, 1974.
  13. L.I. Schiff, Quantum Mechanics, 3rd Edn., McGraw-Hill, New-York, 1968.
  14. E.T. Whittaker and G.N. Watson, Modern Analysis. 4th Edn., Chapter XVI, Cambridge Univ. Press, 1940.
  15. J.L. Paillet and A. Meulenberg, Relativity and electron deep orbits of the hydrogen atom, Proc. of the 1st French Symp. RNBE-2016 on Cond. Matter Nucl. Sc., Avignon, 18-20 March 16" J. Condensed Matter Nucl. Sci. 21 (2016) 40-58, http://coldfusioncommunity.net/pdf/jcmns/v21/40_JCMNS-Vol21.pdf.
  16. S.V. Adamenko and V.I. Vysotskii, Mechanism of synthesis of superheavy nuclei via the process of controlled electron- nuclear collapse, Found. Phys. Lett. 17(3) ( 2004) 203-233.
  17. S.V. Adamenko and V.I. Vysotskii, Evolution of annular self-controlled electron-nucleus collapse in condensed targets, Found. Phys. 34 (??) (2004) 1801-1831.
  18. J.P. Vigier, New hydrogen (deuterium) Bohr orbits in quantum chemistry and cold fusion processes, Proc. of ICCF 4, 3-6 Dec. 1993, Lahaina, Maui, Hawaii. TR-104188-V4, Section 7, 1994, pp.
  19. A.O. Barut Prediction of new tightly-bound states of H + 2 (D + 2 ) and cold fusion experiments, Int. J. Hydrogen Energy 15 (12) (1990) 907-909.
  20. A. Dragic, Z. Maric and J.P. Vigier, Phys. Lett. A 237 (1998) 349-353.
  21. N.V. Samsonenko, D.V. Tahti and F. Ndahayo, On the Barut-Vigier model of the hydrogen atom physics, Phys. Lett. A 220 (1996) 297-301.
  22. S. Ozcelik and M. Simsek, Phys. Lett. A 152 (1991) 145-149.
  23. R.L. Amoroso and J.P.(Posth) Vigier, Evidency 'Tight Bound States' in the hydrogen atom, Unified Field Mechanics, 9th Int. Symp. Honoring Math. Physicist J.-P. Vigier, Dec. 2014.
  24. H.A. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72 (1947) 337.
  25. W. Lamb and R. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72(3) (1947) 241-243.
  26. J.M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Addison-Wesley, Reading, USA, 2nd Printing, June 59.
  27. F.J. Dyson, Advanced Quantum Mechanics, 2nd Edn., arXiv:quant-ph/0608140v1 18 Aug. 2006.
  28. F.Mandl and G. Shaw, Quantum Field Theory, 2nd Edn., Wiley, Chichester, UK, 2010.
  29. Virial Theorem, https://en.wikipedia.org/wiki/Virial_theorem, 3 Nov. 2019.
  30. Spectral Theory, https://en.wikipedia.org/wiki/Spectral_theory, 26 Sept. 2019.
  31. W. Gös, Hole trapping and the negative bias temperature instability, Ph.D. thesis, Technische Universität Wien, 2011, Phys- ical Basis A2: Wenzel-Kramers-Brillouin Method, http://www.iue.tuwien.ac.at/phd/goes/.
  32. WKB approximation, Wikipedia, https://en.wikipedia.org/wiki/WKB_approximation, 17/11/2019.
  33. Gamow Factor, Wikipedia, https://en.wikipedia.org/wiki/Gamow_factor, 14/10/2019.
  34. R.T. Deck, Jacques G. Amar and Gustave Fralick, Nuclear size corrections to the energy levels of single-electron and -muon atoms, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 2173-2186.
  35. A. Meulenberg, Creation and fusion of photons, Paper 8121-29, presented at SPIE Optics + Photonics 2011, Conference 8121 The Nature of Light: What are Photons? IV, 21-25 August 2011, San Diego, CA USA in Appendix B: Conditions for Radiation and A. Meulenberg, "The Photon-Quantized Atom", https://www.researchgate.net/publication/337155472_The_Photon-Quantized_Atom.