Academia.eduAcademia.edu

Outline

Phonon renormalization in doped bilayer graphene

https://doi.org/10.1103/PHYSREVB.79.155417

Abstract

We report phonon renormalization in bilayer graphene as a function of doping. The Raman G peak stiffens and sharpens for both electron and hole doping as a result of the nonadiabatic Kohn anomaly at the ⌫ point. The bilayer has two conduction and valence subbands, with splitting dependent on the interlayer coupling. This gives a change of slope in the variation of G peak position with doping which allows a direct measurement of the interlayer coupling strength.

References (60)

  1. † acf26@eng.cam.ac.uk
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci- ence 306, 666 ͑2004͒.
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature ͑London͒ 438, 197 ͑2005͒.
  4. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature ͑Lon- don͒ 438, 201 ͑2005͒.
  5. J.-C. Charlier, P. C. Eklund, J. Zhu, and A. C. Ferrari, Top. Appl. Phys. 111, 673 ͑2008͒.
  6. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 ͑2007͒.
  7. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 ͑2008͒.
  8. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotech- nol. 3, 491 ͑2008͒.
  9. K. I. Bolotin, K. J. Sikes, Z. Jiang, G. Fundenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 ͑2008͒;
  10. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 ͑2008͒.
  11. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 ͑2007͒.
  12. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 ͑2007͒.
  13. Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E ͑Amsterdam͒ 40, 228 ͑2007͒.
  14. E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805 ͑2006͒.
  15. T. Ando, J. Phys. Soc. Jpn. 76, 104711 ͑2007͒.
  16. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 ͑2006͒.
  17. E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Ta- kita, Y.-J. Wang, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 100, 087403 ͑2008͒.
  18. E. McCann, Phys. Rev. B 74, 161403͑R͒ ͑2006͒.
  19. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 ͑2007͒.
  20. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 ͑2006͒.
  21. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyun- yan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett. 7, 2711 ͑2007͒.
  22. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 ͑2007͒.
  23. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nature Mater. 6, 198 ͑2007͒.
  24. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 ͑2007͒.
  25. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 ͑2007͒.
  26. A. C. Ferrari, Solid State Commun. 143, 47 ͑2007͒.
  27. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 ͑2008͒.
  28. A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31, 579 ͑2008͒.
  29. N. Ferralis, R. Maboudian, and C. Carraro, Phys. Rev. Lett. 101, 156801 ͑2008͒.
  30. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Mar- zari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, arXiv:0812.1538 ͑unpublished͒.
  31. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, Nano Lett. 9, 1433 ͑2009͒.
  32. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 ͑2009͒.
  33. L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B 76, 201401͑R͒ ͑2007͒.
  34. A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc. London, Ser. A 362, 2267 ͑2004͒.
  35. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 ͑1970͒.
  36. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 ͑2000͒; 64, 075414 ͑2001͒.
  37. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 ͑2000͒.
  38. S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robert- son, Phys. Rev. Lett. 93, 185503 ͑2004͒.
  39. M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 ͑2006͒.
  40. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robert- son, Phys. Rev. B 73, 155426 ͑2006͒.
  41. A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. R. Rao, Phys. Rev. Lett. 99, 136803 ͑2007͒.
  42. T. Ando, J. Phys. Soc. Jpn. 75, 124701 ͑2006͒.
  43. J. Yan, E. A. Henriksen, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 101, 136804 ͑2008͒.
  44. L. M. Malard, D. C. Elias, E. S. Alves, and M. A. Pimenta, Phys. Rev. Lett. 101, 257401 ͑2008͒.
  45. P. R. Wallace, Phys. Rev. 71, 622 ͑1947͒.
  46. J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 ͑1958͒.
  47. J. W. McClure, Phys. Rev. 108, 612 ͑1957͒.
  48. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 ͑2002͒.
  49. K. T. Nguyen, A. Gaur, and M. Shim, Phys. Rev. Lett. 98, 145504 ͑2007͒.
  50. C. Lu, Q. Fu, S. Huang, and J. Liu, Nano Lett. 4, 623 ͑2004͒.
  51. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nature Mater. 7, 151 ͑2008͒.
  52. Note that in Fig. 3 of Ref. 13 both SLG density of states and electron concentration are multiplied by a factor of 2.
  53. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 ͑2009͒.
  54. L. Pietronero and S. Strassler, Phys. Rev. Lett. 47, 593 ͑1981͒.
  55. W. E. Pickett and P. B. Allen, Phys. Rev. B 16, 3127 ͑1977͒.
  56. P. B. Allen, Phys. Rev. B 6, 2577 ͑1972͒. 55 Note that the phonon self-energy imaginary part corresponds to the G peak half width at half maximum, HWHM͑G͒, as for Eq. ͑8͒ in Ref. 54, thus, the factor 2 to compute FWHM͑G͒ in Eq. ͑5͒. This is sometimes neglected in literature. For example, ⌬⌫ in Eq. ͑1͒ of Ref. 22 represents HWHM͑G͒ and not FWHM͑G͒. Reference 22 then compares this to FWHM͑G͒ calculated in Eq. ͑3͒ of Ref. 38, finding D 2 / 4=͗D ⌫
  57. ͘ F . However, the correct rela- tion should be D 2 / 2=͗D ⌫
  58. ͘ F . Because of this, the coupling con- stant of Ref. 22 is =2␣Ј instead of = ␣Ј. Similarly, "broaden- ing" in Figs. 4 and 6 of Ref. 13 and Fig. 4 of Ref. 40 is HWHM͑G͒ and not FWHM͑G͒. Also, Fig. 6 in Ref. 56 mistak- enly compares the experimental FWHM of the G -peak of me- tallic single wall carbon nanotubes to the theroetical HWHM.
  59. K. Ishikawa and T. Ando, J. Phys. Soc. Jpn. 75, 084713 ͑2006͒. 57 Note that the prefactor of Eq. ͑7͒ of Ref. 21 should be 0 ␣Ј 4c . 58 EPC͑⌫͒ is equivalent to ͗G ⌫
  60. D. M. Basko, Phys. Rev. B 78, 125418 ͑2008͒; D. M. Basko, S.