Phonon renormalization in doped bilayer graphene
https://doi.org/10.1103/PHYSREVB.79.155417Abstract
We report phonon renormalization in bilayer graphene as a function of doping. The Raman G peak stiffens and sharpens for both electron and hole doping as a result of the nonadiabatic Kohn anomaly at the ⌫ point. The bilayer has two conduction and valence subbands, with splitting dependent on the interlayer coupling. This gives a change of slope in the variation of G peak position with doping which allows a direct measurement of the interlayer coupling strength.
References (60)
- † acf26@eng.cam.ac.uk
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci- ence 306, 666 ͑2004͒.
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature ͑London͒ 438, 197 ͑2005͒.
- Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature ͑Lon- don͒ 438, 201 ͑2005͒.
- J.-C. Charlier, P. C. Eklund, J. Zhu, and A. C. Ferrari, Top. Appl. Phys. 111, 673 ͑2008͒.
- A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 ͑2007͒.
- S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 ͑2008͒.
- X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotech- nol. 3, 491 ͑2008͒.
- K. I. Bolotin, K. J. Sikes, Z. Jiang, G. Fundenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 ͑2008͒;
- K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 ͑2008͒.
- M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 ͑2007͒.
- M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 ͑2007͒.
- Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E ͑Amsterdam͒ 40, 228 ͑2007͒.
- E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805 ͑2006͒.
- T. Ando, J. Phys. Soc. Jpn. 76, 104711 ͑2007͒.
- T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 ͑2006͒.
- E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Ta- kita, Y.-J. Wang, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 100, 087403 ͑2008͒.
- E. McCann, Phys. Rev. B 74, 161403͑R͒ ͑2006͒.
- E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 ͑2007͒.
- A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 ͑2006͒.
- C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyun- yan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett. 7, 2711 ͑2007͒.
- P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 ͑2007͒.
- S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nature Mater. 6, 198 ͑2007͒.
- J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 ͑2007͒.
- C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 ͑2007͒.
- A. C. Ferrari, Solid State Commun. 143, 47 ͑2007͒.
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 ͑2008͒.
- A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31, 579 ͑2008͒.
- N. Ferralis, R. Maboudian, and C. Carraro, Phys. Rev. Lett. 101, 156801 ͑2008͒.
- T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Mar- zari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, arXiv:0812.1538 ͑unpublished͒.
- C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, Nano Lett. 9, 1433 ͑2009͒.
- D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 ͑2009͒.
- L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B 76, 201401͑R͒ ͑2007͒.
- A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc. London, Ser. A 362, 2267 ͑2004͒.
- F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 ͑1970͒.
- A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 ͑2000͒; 64, 075414 ͑2001͒.
- C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 ͑2000͒.
- S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robert- son, Phys. Rev. Lett. 93, 185503 ͑2004͒.
- M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 ͑2006͒.
- M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robert- son, Phys. Rev. B 73, 155426 ͑2006͒.
- A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. R. Rao, Phys. Rev. Lett. 99, 136803 ͑2007͒.
- T. Ando, J. Phys. Soc. Jpn. 75, 124701 ͑2006͒.
- J. Yan, E. A. Henriksen, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 101, 136804 ͑2008͒.
- L. M. Malard, D. C. Elias, E. S. Alves, and M. A. Pimenta, Phys. Rev. Lett. 101, 257401 ͑2008͒.
- P. R. Wallace, Phys. Rev. 71, 622 ͑1947͒.
- J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 ͑1958͒.
- J. W. McClure, Phys. Rev. 108, 612 ͑1957͒.
- M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 ͑2002͒.
- K. T. Nguyen, A. Gaur, and M. Shim, Phys. Rev. Lett. 98, 145504 ͑2007͒.
- C. Lu, Q. Fu, S. Huang, and J. Liu, Nano Lett. 4, 623 ͑2004͒.
- J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nature Mater. 7, 151 ͑2008͒.
- Note that in Fig. 3 of Ref. 13 both SLG density of states and electron concentration are multiplied by a factor of 2.
- A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 ͑2009͒.
- L. Pietronero and S. Strassler, Phys. Rev. Lett. 47, 593 ͑1981͒.
- W. E. Pickett and P. B. Allen, Phys. Rev. B 16, 3127 ͑1977͒.
- P. B. Allen, Phys. Rev. B 6, 2577 ͑1972͒. 55 Note that the phonon self-energy imaginary part corresponds to the G peak half width at half maximum, HWHM͑G͒, as for Eq. ͑8͒ in Ref. 54, thus, the factor 2 to compute FWHM͑G͒ in Eq. ͑5͒. This is sometimes neglected in literature. For example, ⌬⌫ in Eq. ͑1͒ of Ref. 22 represents HWHM͑G͒ and not FWHM͑G͒. Reference 22 then compares this to FWHM͑G͒ calculated in Eq. ͑3͒ of Ref. 38, finding D 2 / 4=͗D ⌫
- ͘ F . However, the correct rela- tion should be D 2 / 2=͗D ⌫
- ͘ F . Because of this, the coupling con- stant of Ref. 22 is =2␣Ј instead of = ␣Ј. Similarly, "broaden- ing" in Figs. 4 and 6 of Ref. 13 and Fig. 4 of Ref. 40 is HWHM͑G͒ and not FWHM͑G͒. Also, Fig. 6 in Ref. 56 mistak- enly compares the experimental FWHM of the G -peak of me- tallic single wall carbon nanotubes to the theroetical HWHM.
- K. Ishikawa and T. Ando, J. Phys. Soc. Jpn. 75, 084713 ͑2006͒. 57 Note that the prefactor of Eq. ͑7͒ of Ref. 21 should be 0 ␣Ј 4c . 58 EPC͑⌫͒ is equivalent to ͗G ⌫
- D. M. Basko, Phys. Rev. B 78, 125418 ͑2008͒; D. M. Basko, S.