A Paraconsistentist Approach to Chisholm's Paradox
2009, Principia: an International Journal of Epistemology
Abstract
The Logics of Deontic (In)Consistency (LDI's) can be considered as the deontic counterpart of the paraconsistent logics known as Logics of Formal (In)Consistency. This paper introduces and studies new LDI's and other paraconsistent deontic logics with different properties: systems tolerant to contradictory obligations; systems in which contradictory obligations trivialize; and a bimodal paraconsistent deontic logic combining the features of previous systems. These logics are used to analyze the well-known Chisholm's paradox, taking profit of the fact that, besides contradictory obligations do not trivialize in LDI's, several logical dependencies of classical logic are blocked in the context of LDI's, allowing to dissolve the paradox.
Key takeaways
AI
AI
- The paper explores paraconsistent deontic logics to address Chisholm's paradox.
- Introduces Logics of Deontic (In)Consistency (LDIs) as a tool for analyzing deontic paradoxes.
- New LDIs include DPI and SDPI, accommodating contradictory obligations without trivialization.
- Classical logic's rigidity creates unnecessary dependencies that exacerbate deontic paradoxes.
- Chisholm's paradox can be resolved by weakening the Principle of Deontic Consistency.
References (30)
- Åqvist, L. 2002. Deontic logic. In D. Gabbay and F. Guenthner (eds.) Handbook of Philosoph- ical Logic (2nd. edition), volume 8, 147-264. Kluwer Academic Publishers.
- Batens, D. 1980. Paraconsistent extensional propositional logics. Logique et Analyse 90-91: 195-234.
- Bueno-Soler, J. 2008. Possible-translations semantics for cathodic modal logics. CLE e-Prints 8(6). URL = http://www.cle.unicamp.br/e-prints/vol_8,n_6,2008.html.
- Carmo, J. & Jones, A. 1997. Dyadic deontic logic and contrary-to-duty obligations. In D. Nute (ed.) Defeasible Deontic Logic, volume 263 of Synthese Library, 317-44. Kluwer Publishing Company.
- Carnielli, W. A.; Coniglio, M.; Marcos, J. 2007. Logics of Formal Inconsistency. In D. Gabbay and F. Guenthner (eds.) Handbook of Philosophical Logic (2nd. edition), volume 14, 15- 107. Springer.
- Carnielli, W. A. & Marcos, J. 1999. Limits for paraconsistency calculi. Notre Dame Journal of Formal Logic 40(3): 375-90.
- ---. 2002. A Taxonomy of C-systems. In: Carnielli, W. A., Coniglio, M. E. and D'Ottaviano, I. M. L. (eds.) Paraconsistency: The Logical Way to the Inconsistent, pp. 1-94, Marcel Dekker. Preliminary version available at CLE e-Prints 1(5), 2001. URL = http://www.cle.unicamp.br/e-prints/abstract_5.htm.
- Carnielli, W. A. & Pizzi, C. 2008. Modalities and Multimodalities, volume 12 of Logic, Episte- mology, and the Unity of Science. Springer Verlag.
- Chellas, B. 1980. Modal Logic: an introduction. Cambridge: Cambridge University Press.
- Chisholm, R. 1963. Contrary-to-duty imperatives and Deontic Logic. Analysis 24: 33-6.
- Coniglio, M. E. 2007. Logics of Deontic Inconsistency. CLE e-Prints 7(4). URL = http://www.cle.unicamp.br/e-prints/vol_7,n_4,2007.html.
- Costa-Leite, A. 2003. Paraconsistência, modalidade e cognoscibilidade (Paraconsistency, Modal- ity and Cognoscibility, in Portuguese). Master's thesis, Institute of Philosophy and Human sciences, State University of Campinas (UNICAMP), Campinas.
- Creswell, M. J. & Hughes, G. E. 1996. A New Introduction to Modal Logic. London: Houtledge.
- Cruz, A. M. P. 2005. Lógica Deôntica Paraconsistente: Paradoxos e Dilemas (Paraconsistent Deontic Logic: Paradoxes and Dilemmas, in Portuguese). Natal: Editora da UFRN, Brazil.
- da Costa, N. C. A. 1963. Sistemas Formais Inconsistentes (Inconsistent Formal Systems, in Portuguese). Habilitation Thesis. Republished by Editora UFPR, Curitiba, 1993.
- ---. 1974. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic XV: 497-510.
- da Costa, N. C. A. & Carnielli, W. A. 1986. Paraconsistent Deontic Logic. Philosophia 16(3/4): 293-305.
- Jaśkowski, S. 1948. Rachunek zdan dla systemów dedukcyjnych sprzecznych. Societatis Sci- entiarun Torunesis, Sectio A I: 55-77. Translated as: "Propositional Calculus for Contra- dictory Deductive Systems", Studia Logica 24: 143-157, 1969.
- McConnell, T. 2006. Moral Dilemmas. In E. N. Zalta (ed.), The Stanford Encyclopedia of Phi- losophy.
- URL = http://www.plato.stanford.edu/entries/modal-dilemmas/.
- McNamara, P. 2006. Deontic Logic. In E. N. Zalta (ed.) The Stanford Encyclopedia of Philoso- phy. URL = http://www.plato.stanford.edu/entries/logic-deontic/.
- Peron, N. M. 2009. Lógicas da Inconsistência Deôntica (Logics of Deontic Inconsistency, in Por- tuguese). Master's thesis, Institute of Philosophy and Human sciences, State University of Campinas (UNICAMP), Campinas.
- Peron, N. M. & Coniglio, M.E. 2008. Logics of Deontic Inconsistencies and Paradoxes. CLE e-Prints 8(6).
- URL = http://www.cle.unicamp.br/e-prints/vol_8,n_6,2008.html.
- Prakken, H. & Sergot, M. 1994. Contrary-to-duty imperatives, defeasibility and violability. In: Jones, A. and Sergot, M. (eds.), Proceedings of the 2nd International Workshop on Deontic Logic in Computer Science (DEON94), volume 1/94 of CompLex, pp. 296-318, Tano A.S., Oslo.
- ---. 1997. Dyadic deontic logic and contrary-to-duty obligations. In: Nute, D. (ed.), De- feasible Deontic Logic, volume 263 of Synthese Library, pp. 223-62. Kluwer Publishing Company.
- Puga, L.Z., da Costa, N. C. A. & Carnielli, W. A. 1988. Kantian and Non-Kantian Logics. Logique & Analyse 31(121/122): 3-9.
- Ross, D. 1930. The Right and the Good. Oxford: Oxford University Press.
- von Wright, G. 1951. Deontic Logic. Mind 60: 1-15. Republished in: Logical Studies (by G. H. von Wright). Londres: Routledge and Kegan Paul, 1967, 58-74.
- MARCELO ESTEBAN CONIGLIO AND NEWTON MARQUES PERON Department of Philosophy and Centre for Logic, Epistemology and the History of Science (CLE) State University of Campinas (UNICAMP) P.O. Box 6110 13081-970 Campinas, SP, Brazil coniglio@cle.unicamp.br and newton.peron@gmail.com Resumo. As Lógicas da (In)Consistência Deôntica (LDI's) podem ser consideradas como sendo a contraparte deôntica das lógicas paraconsistentes chamadas de Lógicas da (In)Con- sistência Formal. Neste artigo são introduzidas e estudadas novas LDI's e outras lógicas deôn- ticas paraconsistentes satisfazendo diferentes propriedades: sistemas tolerantes a obrigações contraditórias; sistemas em que as obrigações contraditórias produzem trivialização; e uma lógica deôntica paraconsistente bimodal que combina as características de sistemas previ- amente introduzidos. Estas lógicas são utilizadas para analisar o conhecido paradoxo de