Academia.eduAcademia.edu

Outline

Elementary stochastic calculus for finance with infinitesimals

2017, Commentationes Mathematicae Universitatis Carolinae

https://doi.org/10.14712/1213-7243.2015.192

Abstract

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

Key takeaways
sparkles

AI

  1. Stochastic calculus is essential for derivatives pricing, particularly using infinitesimal time steps.
  2. The equivalent martingale measure theorem enables derivative valuation under adjusted probability measures.
  3. Infinitesimals can simplify the mathematical framework of financial models, enhancing accessibility for practitioners.
  4. The paper aims to make derivatives pricing techniques more approachable for financial engineers without advanced calculus training.
  5. Key stochastic processes, including Brownian motion, are constructed using hyperfinite binomial trees and non-standard analysis.

References (30)

  1. Albeverio S., Fenstad J.E., Hoegh-Krohn R., Lindstrom T., Nonstadard Methods in Sto- chastic Analysis and Mathematical Physics, Dover Publications, 1986.
  2. Anderson R.M., A nonstandard representation for Brownian motion and Itô integration, Israel Math. J. 25 (1976), 15-46.
  3. Bacheier L., La Theorie de la Speculation, Annales de l'Ecole Normale Superieure, 3, Gauthier-Villars, Paris, 1900.
  4. Berg I., Principles of Infinitesimal Stochastic and Financial Analysis, World Scientific, Singapore, 2000.
  5. Brown R., A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Phil. Mag. 4 (1828), 161-173.
  6. Cox J., Ross S., Rubinstein M., Option pricing: a simplified approach, J. Financial Econom. 7 (1979), 229-263.
  7. Cutland N., Kopp E., Willinger W., A nonstandard approach to option pricing, Mathe- matical Finance 1 (1991), no. 4, 1-38.
  8. Cutland N., Kopp E., Willinger W., A nonstandard treatment of options driven by Poisson processes, Stochastics Stochastics Rep. 42 (1993), 115-133.
  9. Cutland N., Kopp E., Willinger W., From discrete to continuous stochastic calculus, Stochastics Stochastics Rep. 52 (1995), 173-192.
  10. Cutland N., Kopp E., Willinger W., Wyman M.C., Convergence of Snell envelopess and critical prices in the American put, Mathematics of Derivative Securitities (M.A.H. Demp- ster and S.R. Pliska, eds.), Cambridge University Press, Cambridge, 1997, pp. 126-140.
  11. Cutland N., Loeb Measures in Practice: Recent Advances, Lecture Notes in Mathematics, 1751, Springer, Berlin, 2000.
  12. Einstein A., Investigations on the theory of the Brownian movement, R. Fürth (Ed.), Dover Publications, New York, 1956.
  13. Herzberg F.S., Stochastic Calculus with Infinitesimals, Springer, Heidelberg, 2013.
  14. Hull J., Options, Futures, and Other Derivatives, 8th edition, Prentice Hall, 2011.
  15. Hurd A.E., Loeb P.A., An Introduction to Nonstandard Real Analysis, Academic Press, Orlando, FL, 1985.
  16. Kalina M., Probability in the alternative set theory, Comment. Math. Univ. Carolin. 30 (1989), no. 2, 347-356.
  17. Witzany J.
  18. Keisler J.H., An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 297, 1984.
  19. Keisler J.H., Elementary Calculus -an Infinitesimal Approach, 2nd edition, University of Wisconsin -Creative Commons., 2000.
  20. Kopp P.E., Hyperfinite Mathematical Finance, in Arkeryd et al. Nonstandard Analysis: Theory and Applications, Kluwer, Dordrecht, 1997.
  21. Lindstrom T., Nonlinear stochastic integrals for hyperfinite Lévy processes, Logic and Ana- lysis 1 (2008), 91-129.
  22. Loeb P.A., Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
  23. Nelson A., Internal set theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165-1198.
  24. Nelson E., Radically Elementary Probability Theory, Princeton University Press, Princeton, NJ, 1987.
  25. Pudlák P., Sochor A., Models of the alternative set theory, J. Symbolic Logic 49 (1984), 570-585.
  26. Rebonato R., Volatility and Correlation: the Perfect Hedger and the Fox , 2nd edition, Wiley, 2004.
  27. Robinson A., Nonstandard analysis, Proc. Roy. Acad. Amsterdam Ser. A 64 (1961), 432- 440.
  28. Shreve S., Stochastic Calculus for Finance II. Continuous Time Models, Springer, New York, 2004.
  29. Shreve S., Stochastic Calculus for Finance I. The Binomial Asset Pricing Model , Springer, New York, 2005.
  30. Vopěnka P., Mathematics in the Alternative Set Theory, Teubner, Leipzig, 1979. Faculty of Finance and Accounting, University of Economics, Winston Churchill Sq. 4, Prague 3, Czech Republic E-mail: witzanyj@vse.cz (Received February 21, 2015, revised December 2, 2016)