Linearized trinomials with maximum kernel
2022, Journal of Pure and Applied Algebra
https://doi.org/10.1016/J.JPAA.2021.106842Abstract
Linearized polynomials have attracted a lot of attention because of their applications in both geometric and algebraic areas. Let q be a prime power, n be a positive integer and σ be a generator of Gal(F q n : F q). In this paper we provide closed formulas for the coefficients of a σ-trinomial f over F q n which ensure that the dimension of the kernel of f equals its σ-degree, that is linearized polynomials with maximum kernel. As a consequence, we present explicit examples of linearized trinomials with maximum kernel and characterize those having σ-degree 3 and 4. Our techniques rely on the tools developed in [24]. Finally, we apply these results to investigate a class of rank metric codes introduced in [8], to construct quasi-subfield polynomials and cyclic subspace codes, obtaining new explicit constructions to the conjecture posed in [37].
References (42)
- D. Bartoli and M. Montanucci: On the classification of excep- tional scattered polynomials, J. Combin. Theory Ser. A 179 (2021), 105386.
- D. Bartoli and Y. Zhou: Asymptotics of Moore exponent sets, J. Combin. Theory Ser. A 175 (2020), 105281.
- D. Bartoli and Y. Zhou: Exceptional scattered polynomials, J. Algebra 509 (2018), 507-534.
- E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv: Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory 62(3) (2016), 1157-1165.
- E. Ben-Sasson and S. Kopparty: Affine dispersers from subspace polynomials, SIAM Journal on Computing 41(4) (2012), 880-914.
- V. Bouniakowsky: Nouveaux théorèmes relatifs à la distinction des nombres premiers et à la décomposition des entiers en facteurs, Mém. Acad. Sc. St. Pétersbourg 6 (1857), 305-329.
- B. Csajbók: Scalar q-subresultants and Dickson matrices, J. Algebra 547 (2020), 116-128.
- B. Csajbók, G. Marino, O. Polverino and Y. Zhou: MRD codes with maximum idealizers, Discrete Math. 343(9) (2020), https://doi.org/10.1016/j.disc.2020.111985.
- B. Csajbók, G. Marino, O. Polverino and F. Zullo: A char- acterization of linearized polynomials with maximum kernel, Finite Fields Appl. 56 (2019), 109-130.
- P. Delsarte: Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226-241.
- T. Etzion and A. Vardy: Error-correcting codes in projective space, IEEE Trans. Inform. Theory 57(2) (2011), 1165-1173.
- M. Euler: Expanding the use of quasi-subfield polynomials, Master Thesis, Oxford University (2019).
- M. Euler and C. Petit: New results on quasi-subfield polynomials, Finite Fields Appl. 75 (2021), 101881.
- E. Gabidulin: Theory of codes with maximum rank distance, Prob- lems Inform. Transmission, 21(3) (1985), 3-16.
- L. Giuzzi and F. Zullo: Identifiers for MRD-codes, Linear Algebra Appl. 575 (2019), 66-86.
- R. Gow and R. Quinlan: Galois extensions and subspaces of altern- ing bilinear forms with special rank properties, Linear Algebra Appl. 430 (2009), 2212-2224.
- R. Gow and R. Quinlan: Galois theory and linear algebra, Linear Algebra Appl. 430 (2009), 1778-1789.
- J.W.P. Hirschfeld: Projective Geometries Over Finite Fields, Sec- ond Edition, Oxford University Press, New York (1998).
- M. Huang, M. Kosters, C. Petit, S. Yeo and Y. Yun: Quasi- subfield polynomials and the elliptic curve discrete logarithm problem, J. Math. Cryptol. 14(1), 25-38.
- R. Koetter and F. R. Kschischang: Coding for errors and era- sures in random network coding, IEEE Trans. Inform. Theory 54 (2008), 3579-3591.
- D. Liebhold and G. Nebe: Automorphism groups of Gabidulin-like codes, Arch. Math. 107(4) (2016), 355-366.
- G. Lunardon, R. Trombetti and Y. Zhou: On kernels and nuclei of rank metric codes, J. Algebraic Combin. 46 (2017), 313-340.
- G. Lunardon, R. Trombetti and Y. Zhou: Generalized Twisted Gabidulin Codes, J. Combin. Theory Ser. A 159 (2018), 79-106.
- G. McGuire and D. Mueller: Some results on linearized tri- nomials that split completely, Finite Fields and their Applications edited by James A. Davis, Berlin, Boston: De Gruyter, 2020, 149- 164. https://doi.org/10.1515/9783110621730-010.
- G. McGuire and J. Sheekey: A Characterization of the Number of Roots of Linearized and Projective Polynomials in the Field of Co- efficients, Finite Fields Appl. 57 (2019), 68-91.
- S. Mesnager, K.H. Kim, J.H. Choe and C. Tang: On the Menezes-Teske-Weng's conjecture, Cryptogr. Commun. 12(1) (2020), 19-27.
- A. Neri, S. Puchinger, A. Horlemann-Trautmann: Equiva- lence and Characterizations of Linear Rank-Metric Codes Based on Invariants, Linear Algebra Appl. 603 (2020), 418-469.
- OEIS Foundation Inc. (2020): The On-Line Encyclopedia of In- teger Sequences, http://oeis.org (2020).
- K. Otal and F. Özbudak: Cyclic subspace codes via subspace poly- nomials, Des. Codes Cryptogr. 85(2) (2017), 191-204.
- O. Polverino and F. Zullo: On the number of roots of some linearized polynomials, Linear Algebra Appl. 601 (2020), 189-218.
- A. Ravagnani: Rank-metric codes and their duality theory, Des. Codes Cryptogr. 80(1) (2016), 197-216.
- N. Raviv, A. Wachter-Zeh: Some Gabidulin codes cannot be list decoded efficiently at any radius, IEEE Trans. Inform. Theory 62(4) (2016), 1605-1615.
- R. M. Roth, N. Raviv and I. Tamo: Construction of Sidon Spaces With Applications to Coding, IEEE Trans. Inform. Theory 64(6) (2018), 4412-4422.
- P. Santonastaso and F. Zullo: On the list decodability of rank- metric codes containing Gabidulin codes, arXiv:2103.07547.
- J. Sheekey: MRD codes: constructions and connections, Combina- torics and finite fields: Difference sets, polynomials, pseudorandom- ness and applications, Radon Series on Computational and Applied Mathematics, K.-U. Schmidt and A. Winterhof (eds.).
- J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. 10(3) (2016), 475-488.
- A. L. Trautmann, F. Manganiello, M. Braun and J. Rosen- thal: Cyclic orbit codes, IEEE Trans. Inform. Theory 59(11) (2013), 7386-7404.
- R. Trombetti and F. Zullo: On the list decodability of Rank Metric codes, IEEE Trans. Inform. Theory 66(9) (2020), 5379-5386.
- A. Wachter-Zeh: Bounds on list decoding of rank-metric codes. IEEE Trans. Inform. Theory 59(11) (2013), 7268-7276.
- C. Zanella: A condition for scattered linearized polyno- mials involving Dickson matrices, J. Geom. (2019) 110(50). https://doi.org/10.1007/s00022-019-0505-z.
- Paolo Santonastaso and Ferdinando Zullo Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Viale Lincoln, 5
- I-81100 Caserta, Italy {paolo.santonastaso,ferdinando.zullo}@unicampania.it