On the number of roots of some linearized polynomials
2020, Linear Algebra and its Applications
https://doi.org/10.1016/J.LAA.2020.05.009Abstract
Linearized polynomials appear in many different contexts, such as rank metric codes, cryptography and linear sets, and the main issue regards the characterization of the number of roots from their coefficients. Results of this type have been already proved in [7, 10, 24]. In this paper we provide bounds and characterizations on the number of roots of linearized polynomials of this form ax + b 0 x q s + b 1 x q s+n + b 2 x q s+2n +. .. + b t−1 x q s+n(t−1) ∈ F q nt [x], with gcd(s, n) = 1. Also, we characterize the number of roots of such polynomials directly from their coefficients, dealing with matrices which are much smaller than the relative Dickson matrices and the companion matrices used in the previous papers. Furthermore, we develop a method to find explicitly the roots of a such polynomial by finding the roots of a q n-polynomial. Finally, as an applications of the above results, we present a family of linear sets of the projective line whose points have a small spectrum of possible weights, containing most of the known families of scattered linear sets. In particular, we carefully study the linear sets in PG(1, q 6) presented in [9].
References (32)
- D. Bartoli, B. Csajbók and M. Montanucci: On a conjecture about maximum scattered subspaces of F q 6 × F q 6 , arXiv:2004.13101 (2020).
- D. Bartoli, M. Giulietti, G. Marino and O. Polverino: Max- imum scattered linear sets and complete caps in Galois spaces, Com- binatorica 38(2) (2018), 255-278.
- D. Bartoli and M. Montanucci: Towards the full classification of exceptional scattered polynomials, https://arxiv.org/abs/1905.11390 (2019).
- D. Bartoli, C. Zanella and F. Zullo: A new family of maximum scattered linear sets in PG(1, q 6 ), https://arxiv.org/abs/1910.02278 (2019).
- D. Bartoli and Y. Zhou: Exceptional scattered polynomials, J. Algebra 509 (2018), 507-534.
- A. Blokhuis and M. Lavrauw: Scattered spaces with respect to a spread in PG(n, q), Geom. Dedicata 81 (2000), 231-243.
- B. Csajbók: Scalar q-subresultants and Dickson matrices, J. Algebra 547 (2020), 116-128.
- B. Csajbók, G. Marino and O. Polverino: Classes and equiva- lence of linear sets in PG(1, q n ), J. Combin. Theory Ser. A 157 (2018), 402-426.
- B. Csajbók, G. Marino, O. Polverino and C. Zanella: A new family of MRD-codes, Linear Algebra Appl. 548 (2018), 203-220.
- B. Csajbók, G. Marino, O. Polverino and F. Zullo: A charac- terization of linearized polynomials with maximum kernel, Finite Fields Appl. 56 (2019), 109-130.
- B. Csajbók, G. Marino and F. Zullo: New maximum scattered linear sets of the projective line, Finite Fields Appl. 54 (2018), 133-150.
- B. Csajbók and C. Zanella: Maximum scattered F q -linear sets of PG(1, q 4 ), Discrete Math. 341 (2018), 74-80.
- M. De Boeck and G. Van de Voorde: A linear set view on KM- arcs, J. Algebraic Combin. 44(1) (2016), 131-164.
- U. Dempwolff, J. C. Fisher and A. Herman: Semilinear trans- formations over finite fields are Frobenius maps, Glasg. Math. J. 42.2 (2000): 289-295.
- R. Gow and R. Quinlan: Galois extensions and subspaces of altern- ing bilinear forms with special rank properties, Linear Algebra Appl. 430 (2009), 2212-2224.
- R. Gow and R. Quinlan: Galois theory and linear algebra, Linear Algebra Appl. 430 (2009), 1778-1789.
- N. Katz: Estimates for Soto-Andrade sums, J. Reine Angew. Math. 438 (1993), 143-161.
- G. Korchmáros and F. Mazzocca: On (q + t)-arcs of type (0, 2, t) in a desarguesian plane of order q, Math. Proc. Camb. Philos. Soc. 108(3) (1990), 445-459.
- M. Lavrauw, G. Marino, O. Polverino and Trombetti: Solu- tion to an isotopism question concerning rank 2 semifields, J. Combin. Des. 23(2) (2015), 60-77.
- R. Lidl and H. Niederreiter: Finite fields, volume 20 of Ency- clopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, second edition, 1997.
- G. Lunardon and O. Polverino: Blocking Sets and Derivable Partial Spreads, J. Algebraic Combin. 14 (2001), 49-56.
- G. Marino, M. Montanucci and F. Zullo: MRD-codes arising from the trinomial x q + x q 3 + cx q 5 ∈ F q 6 [x], Linear Algebra Appl. 591 (2020), 99-114.
- G. McGuire and D. Mueller: Results on linearized trinomials having certain rank, https://arxiv.org/abs/1905.11755 (2019).
- G. McGuire and J. Sheekey: A Characterization of the Number of Roots of Linearized and Projective Polynomials in the Field of Co- efficients, Finite Fields Appl. 57 (2019), 68-91.
- M. Moisio and D. Wan: On Katz's bound for the number of ele- ments with given trace and norm, J. Reine Angew. Math. 638 (2010), 69-74.
- O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310(22) (2010), 3096-3107.
- O. Polverino, G. Zini and F. Zullo: On certain linearized polyno- mials with high degree and kernel of small dimension, arXiv:2004.10650 (2020).
- J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. 10(3) (2016), 475-488.
- R. Trombetti and F. Zullo: On the list decodabil- ity of Rank Metric codes, IEEE Trans. Inform. Theory, DOI: 10.1109/TIT.2020.2966974.
- B. Wu and Z. Liu: Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013), 79-100.
- C. Zanella and F. Zullo: Vertex properties of maximum scattered linear sets of PG(1, q n ), Discrete Math. 343(5) (2020).
- Olga Polverino and Ferdinando Zullo Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", I-81100 Caserta, Italy {olga.polverino,ferdinando.zullo}@unicampania.it