Academia.eduAcademia.edu

Outline

Digital image-based classification of biodiesel

2015, Talanta

https://doi.org/10.1016/J.TALANTA.2015.02.043

Abstract

This work proposes a simple, rapid, inexpensive, and non-destructive methodology based on digital images and pattern recognition techniques for classification of biodiesel according to oil type (cottonseed, sunflower, corn, or soybean). For this, differing color histograms in RGB (extracted from digital images), HSI, Grayscale channels, and their combinations were used as analytical information, which was then statistically evaluated using Soft Independent Modeling by Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and variable selection using the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). Despite good performances by the SIMCA and PLS-DA classification models, SPA-LDA provided better results (up to 95% for all approaches) in terms of accuracy, sensitivity, and specificity for both the training and test sets. The variables selected Successive Projections Algorithm clearly contained the information necessary for biodiesel type classification. This is important since a product may exhibit different properties, depending on the feedstock used. Such variations directly influence the quality, and consequently the price. Moreover, intrinsic advantages such as quick analysis, requiring no reagents, and a noteworthy reduction (the avoidance of chemical characterization) of waste generation, all contribute towards the primary objective of green chemistry.

References (32)

  1. G. Véras, A.A. Gomes, A.C. Silva, A.L.B. Brito, P.B.A. Almeida, E.P. Medeiros, Talanta 83 (2010) 565-568.
  2. G. Knothe, J. Am. Oil Chem. Soc. 76 (1999) 795-800.
  3. R.M. Balabin, E.I. Lomakina, R.Z. Safieva, Fuel 90 (2011) 2007-2015.
  4. R.M. Balabin, R.Z. Safieva, Anal. Chim. Acta 689 (2011) 190-197.
  5. P.H.G.D. Diniz, M.F. Pistonesi, M.C.U. Araújo, B.S.F. Band, Talanta 114 (2013) 38-42.
  6. E. Bakeas, G. Karavalakis, S. Stournas, Sci. Total Environ. 409 (2011) 1670-1676.
  7. S.R. Fore, W. Lazarus, P. Porter, N. Jordan, Biomass Bioenergy 35 (2011) 193-202.
  8. O. Andersen, J.E. Weinbach, Biomass Bioenergy 34 (2010) 1183-1188.
  9. P.A.Z. Suarez, A.L.F. Santos, J.P. Rodrigues, M.B. Alves, Quim. Nova 32 (2009) 768-775.
  10. G. Knothe, J. Am. Oil Chem. Soc. 83 (2006) 823-833.
  11. M.R. Monteiro, A.R.P. Ambrozina, L.M. Lião, A.G. Ferreira, Talanta 77 (2008) 593-605.
  12. G. Veras, A.L.B. Brito, A.C. Silva, P. Silva, G.B. Costa, L.C.N. Felix, D.D. S. Fernandes, M.M. Fontes, Quim. Nova 35 (2012) 315-318.
  13. G.W.B. Silva, A.A. Gomes, P. Silva, G.B. Costa, D.D.S. Fernandes, M.M. Fontes, G. Veras, J. Am. Oil Chem. Soc. 89 (2012) 1165-1171.
  14. L. Byrne, J. Barker, G. Pennarun-Thomas, D. Diamond, Trends Anal. Chem. 19 (2000) 517-522.
  15. C. Zheng, D.W. Sun, L. Zheng, Trends Food Sci. Technol. 17 (2006) 642-655.
  16. C. Duchesne, J.J. Liu, J.F. MacGregor, Chemom. Intell. Lab. Syst. 117 (2012) 116-128.
  17. A.P.M. Silva, P.B. Oliveira, T.B. Bandini, A.G. Barreto Junior, R.C. Sena, J.F.C. Silva, Sens. Actuat. B: Chem. 177 (2013) 1071-1074.
  18. C. López-Muedano, R.S. Kirton, K.D. Kumble, A.J. Taberner, Talanta 100 (2012) 405-409.
  19. P.M. Santos, E.R. Pereira-Filho, Anal. Methods 5 (2013) 3669-3674.
  20. A. Choodum, P. Kanatharana, W. Wongniramaikul, N.N. Daeid, Talanta 115 (2013) 143-149.
  21. W.S. Lyra, L.F. Almeida, F.A.S. Cunha, P.H.G.D. Diniz, V.L. Martins, M.C.U. Araújo, Anal. Methods 6 (2014) 1044-1050.
  22. C.L.M. Morais, K.M.G. Lima, Talanta 126 (2014) 145-150.
  23. R.C. Gonzalez, R.E. Woods, Digital Image Processing, third ed., Addison-Wesley Publishing, Boston, 1992.
  24. C. Solomon, T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach With Examples in Matlab, first ed., Wiley-Blackwell, UK, 2011.
  25. S. Panigrahi, S. Gunasekaran, in: S. Gunasekaran (Ed.), Nondestructive Food Evaluation: Techniques to Analyse Properties and Quality, Marcel Dekker, New York, 2001, pp. 39-98.
  26. P.H.G.D. Diniz, H.V. Dantas, K.D.T. Melo, M.F. Barbosa, D.P. Harding, E.C. L. Nascimento, M.F. Pistonesi, B.S.F. Band, M.C.U. Araújo, Anal. Methods 4 (2012) 2648-2652.
  27. M.A. Domínguez, P.H.G.D. Diniz, M.S. Di Nezio, M.C.U. Araújo, M.E. Centurión, Microchem. J. 112 (2014) 104-108.
  28. U.T.C.P. Souto, M.F. Barbosa, H.V. Dantas, A.S. Pontes, W.S. Lyra, P.H.G.D. Diniz, M.C.U. Araújo, E.C. Silva, Food Anal. Method (2015), http://dx.doi.org/10.1007/ s12161-014-0020-7 (in press).
  29. V.E. Almeida, G.B. Costa, D.D.S. Fernandes, P.H.G.D. Diniz, D. Brandão, A.C. D. Medeiros, G. Véras, Anal. Bioanal. Chem. 406 (2014) 5989-5995.
  30. R.W. Kennard, L.A. Stone, Technometrics 11 (1969) 137-148.
  31. Technical Committee of the Institute of Shortening and Edible Oils, Food Fats and Oils, Institute of Shortening and Edible Oils (ISEO), Washington, 2006.
  32. Codex Alimentarius Commission, Codex Standards for named vegetable oils, CODEX STAN 210-1999, FAO/WHO, Roma, 2001.