Academia.eduAcademia.edu

Outline

On edge irregularity strength of graphs

2014, Applied Mathematics and Computation

Abstract

An edge irregular total k-labeling of a graph G is a labeling of the vertices and edges with labels 1, 2, . . . , k such that the weights of any two different edges are distinct, where the weight of an edge is the sum of the label of the edge itself and the labels of its two end vertices. The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength, tes(G). In this paper we determine the exact values of the total edge irregularity strength of zigzag graphs.

References (19)

  1. L. Addario-Berry, K. Dalal and B.A. Reed, Degree constrained subgraphs, Dis- crete Appl. Math. 156 (2008), 1168-1174.
  2. A. Ahmad and M. Bača, Edge irregular total labeling of certain family of graphs, AKCE J. Graphs. Combin. 6 no. 1 (2009), 21-29.
  3. A. Ahmad and M. Bača, Total edge irregularity strength of a categorical product of two paths, Ars Combin. (to appear).
  4. A. Ahmad, M. Bača, Y. Bashir and M.K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Combin. (to appear).
  5. O. Al-Mushayt, Ali Ahmad and M.K. Siddiqui, On the total edge irregularity strength of hexagonal grid graphs, Australas. J. Combin. 53 (2012), 263-271.
  6. M. Bača, S. Jendro ľ, M. Miller and J. Ryan, On irregular total labellings, Dis- crete Math. 307 (2007), 1378-1388.
  7. T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004), 241-254.
  8. S. Brandt, J. Miškuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory 57 (2008), 333-343.
  9. G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187-192.
  10. T. Chunling, L. Xiaohui, Y. Yuansheng and W. Liping, Irregular total labellings of C m C n , Utilitas Math. 81 (2010), 3-13.
  11. J.H. Dimitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m × n grid, J. Graph Theory 16 (1992), 355-374.
  12. A. Frieze, R.J. Gould, M. Karonski and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002), 120-137.
  13. J. Ivančo and S. Jendro ľ, Total edge irregularity strength of trees, Discussiones Math. Graph Theory 26 (2006), 449-456.
  14. S. Jendro ľ, M. Tkáč and Z. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math. 150 (1996), 179-186.
  15. S. Jendro ľ, J.Miškuf and R. Soták, Total edge irregularity strength of complete and complete bipartite graphs, Electron. Notes Discrete Math. 28 (2007), 281- 285.
  16. S. Jendro ľ, J. Miškuf and R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. 310 (2010), 400-407.
  17. M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004), 151-157.
  18. J. Miškuf and S. Jendro ľ, On total edge irregularity strength of the grids, Tatra Mt. Math. Publ. 36 (2007), 147-151.
  19. Nurdin, A.N.M. Salman and E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Combin. Math. Combin. Comput. 65 (2008), 163-175. (Received 8 Oct 2011; revised 5 July 2012)