Academia.eduAcademia.edu

Outline

A Note on Edge Irregularity Strength of Some Graphs

Indonesian Journal of Combinatorics

https://doi.org/10.19184/IJC.2020.4.1.2

Abstract

Let G(V, E) be a finite simple graph and k be some positive integer. A vertex k-labeling of graph G(V,E), Φ : V → {1,2,..., k}, is called edge irregular k-labeling if the edge weights of any two different edges in G are distinct, where the edge weight of e = xy ∈ E(G), wΦ(e), is defined as wΦ(e) = Φ(x) + Φ(y). The edge irregularity strength for graph G is the minimum value of k such that Φ is irregular edge k-labeling for G. In this note we derive the edge irregularity strength of chain graphs mK3−path for m ≢ 3 (mod4) and C[Cn(m)] for all positive integers n ≡ 0 (mod 4) 3n and m. We also propose bounds for the edge irregularity strength of join graph Pm + Ǩn for all integers m, n ≥ 3.

References (5)

  1. A. Ahmad, A. Gupta, and R. Simanjuntak, Computing the edge irregularity strengths of chain graphs and the join of two graphs, Electron. J. Graph Theory App., 6 (2018), 201-207.
  2. A. Ahmad, O. Al-Mushayt, and M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607-610.
  3. A. A. G. Ngurah, E. T. Baskoro, and R. Simanjuntak, On the super edge-magic deficiencies of graphs, Australas. J. Combin., 40 (2008), 3-14.
  4. I. Tarawneh, R. Hasni, and A. Ahmad, On the edge irregularity strength of corona product of cycle with isolated vertices, AKCE Internat. J. Graphs Combin., 13 (2016), 213-217.
  5. I. Tarawneh, R. Hasni, and A. Ahmad, On the edge irregularity strength of corona product of graphs with paths, Appl. Math. E-Notes, 16 (2016), 80-87.