Abstract
Optimization problems are ubiquitous nowadays. Many times, their corresponding computational models necessarily leave out of consideration several characteristics and features of the real world, so trying to obtain the optimum solution can not be enough for a problem solving point of view. The aim of this paper is to illustrate the role of metaheuristics as solutions’ generators in a basic problem solving framework. Metaheuristics become relevant in two modes: firstly because every run (in the case of population based techniques) allows to obtain a set of potentially good solutions, and secondly, if a reference solution is available, one can set up a new optimization problem that allows to obtain solutions with similar quality in the objectives space but maximally different structure in the design space. Once a set of solutions is obtained, an example of an a posteriori analysis to rank them according with decision maker’s preferences is shown. All the problem solving framework step...
References (21)
- Gunalay, Y.; Yeomans, J.S. Simulation-optimization techniques for modelling to generate alternatives in waste management planning. J. Appl. Oper. Res. 2011, 3, 23-35.
- Janssen, J.; Krol, M.; Schielen, R.; Hoekstra, A. The effect of modelling quantified expert knowledge and uncertainty information on model based decision making. Environ. Sci. Policy 2010, 13, 229-238. [CrossRef]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; Van Der Sluijs, J.P.; Van Asselt, M.B.; Janssen, P.; Krayer von Krauss, M.P. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 2003, 4, 5-17.
- Brill, E.D., Jr.; Chang, S.Y.; Hopkins, L.D. Modeling to generate alternatives: The HSJ approach and an illustration using a problem in land use planning. Manag. Sci. 1982, 28, 221-235. [CrossRef]
- Loughlin, D.H.; Ranjithan, S.R.; Brill, E.D., Jr; Baugh, J.W., Jr. Genetic algorithm approaches for addressing unmodeled objectives in optimization problems. Eng. Optim. 2001, 33, 549-569. [CrossRef]
- Zechman, E.M.; Ranjithan, S.R. An evolutionary algorithm to generate alternatives (EAGA) for engineering optimization problems. Eng. Optim. 2004, 36, 539-553. [CrossRef]
- Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G. A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 2014, 20, 291-328. [CrossRef]
- Utama, D.M.; Dewi, S.K.; Wahid, A.; Santoso, I. The vehicle routing problem for perishable goods: A systematic review. Cogent Eng. 2020, 7, 1816148. [CrossRef]
- Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2007. [CrossRef]
- Torres, M.; Pelta, D.A.; Lamata, M.T.; Yager, R.R. An approach to identify solutions of interest from multi and many-objective optimization problems. Neural Comput. Appl. 2021, 33, 2471-2481. [CrossRef]
- Liu, F.; Pan, L.H.; Liu, Z.L.; Peng, Y.N. On possibility-degree formulae for ranking interval numbers. Soft Comput. 2018, 22, 2557-2565. [CrossRef]
- Schilde, M.; Doerner, K.F.; Hartl, R.F.; Kiechle, G. Metaheuristics for the bi-objective orienteering problem. Swarm Intell. 2009, 3, 179-201. [CrossRef]
- Souffriau, W.; Vansteenwegen, P.; Vertommen, J.; Berghe, G.V.; Oudheusden, D.V. A personalized tourist trip design algorithm for mobile tourist guides. Appl. Artif. Intell. 2008, 22, 964-985. [CrossRef]
- Deitch, R.; Ladany, S.P. The one-period bus touring problem: Solved by an effective heuristic for the orienteering tour problem and improvement algorithm. Eur. J. Oper. Res. 2000, 127, 69-77. [CrossRef]
- Garcia, A.; Vansteenwegen, P.; Arbelaitz, O.; Souffriau, W.; Linaza, M.T. Integrating public transportation in personalised electronic tourist guides. Comput. Oper. Res. 2013, 40, 758-774. [CrossRef]
- Vansteenwegen, P.; Souffriau, W.; Berghe, G.V.; Oudheusden, D.V. The City Trip Planner: An expert system for tourists. Expert Syst. Appl. 2011, 38, 6540-6546. [CrossRef]
- Brugnach, M.; Tagg, A.; Keil, F.; de Lange, W.J. Uncertainty matters: computer models at the science-policy interface. Water Resour. Manag. 2007, 21, 1075-1090. [CrossRef]
- Matthies, M.; Giupponi, C.; Ostendorf, B. Environmental Decision Support Systems: Current Issues, Methods and Tools. Environ. Model. Softw. 2007, 22, 123-127.
- Verdegay, J. Fuzzy Mathematical Programming. In Fuzzy Information and Decision Processes; Gupta, M.M., Sanchez, E., Eds.; North-Holland: New York, NY, USA, 1982.
- Wang, S.; Tao, F.; Shi, Y.; Wen, H. Optimization of vehicle routing problem with time windows for cold chain logistics based on carbon tax. Sustainability 2017, 9, 694. [CrossRef]
- Wang, X.; Wang, M.; Ruan, J.; Li, Y. Multi-objective optimization for delivering perishable products with mixed time windows. Adv. Prod. Eng. Manag. 2018, 13, 321-332. [CrossRef]