Structure and Metaheuristics
https://doi.org/10.1145/1143997.1144172Abstract
Metaheuristics have often been shown to be effective for difficult combinatorial optimization problems. The reason for that, however, remains unclear. A framework for a theory of metaheuristics crucially depends on a formal representative model of such algorithms. This paper unifies/reconciles in a single framework the model of a black box algorithm coming from the no-free-lunch research (e.g. Wolpert et al.
References (26)
- REFERENCES
- T. Blickle and L. Thiele. A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation, 4(4):361-394, 1996.
- C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv., 35(3):268-308, 2003.
- Y. Borenstein and R. Poli. Structure and metaheuristics. GECCO 2006.
- Y. Borenstein and R. Poli. Information landscapes. In GECCO '05: Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 1515-1522, New York, NY, USA, 2005. ACM Press.
- J. C. Culberson. On the futility of blind search: An algorithmic view of "no free lunch". Evolutionary Computation, 6(2):109-127, 1998.
- S. Droste, T. Jansen, and I. Wegener. Optimization with randomized search heuristics -the (a)nfl theorem, realistic scenarios, and difficult functions. Theor. Comput. Sci., 287(1):131-144, 2002.
- S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for randomized search heuristics in black-box optimization. Electronic Colloquium on Computational Complexity (ECCC), (048), 2003.
- T. M. English. Evaluation of evolutionary and genetic optimizers: No free lunch. In Evolutionary Programming, pages 163-169, 1996.
- T. M. English. On the structure of sequential search: Beyond "no free lunch". In J. Gottlieb and G. R. Raidl, editors, EvoCOP 2004, Coimbra, Portugal, April 5-7, 2004, Proceedings, volume 3004 of Lecture Notes in Computer Science, pages 95-103. Springer, 2004.
- P. Grunwald and P. Vitanyi. Shannon information and kolmogorov complexity. IEEE Transactions on Information Theory, 2004. In Review.
- C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform distributions of target functions. Journal of Mathematical Modelling and Algorithms, 3(4):313-322, 2004.
- T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In Proceedings of the 6th International Conference on Genetic Algorithms, pages 184-192, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.
- A. Moraglio and R. Poli. Topological interpretation of crossover. In K. Deb et al. editors, Genetic and Evolutionary Computation -GECCO 2004, Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004, Proceedings, Part I, volume 3102 of Lecture Notes in Computer Science, pages 1377-1388. Springer, 2004.
- A. Moraglio and R. Poli. Abstract geometric crossover for the permutation representation. IEEE Trans. Evolutionary Computation, page submitted, 2005.
- A. Moraglio and R. Poli. Geometric landscape of homologous crossover for syntactic trees. In CEC (1), pages 427-434, 2005.
- P.F.Stadler and C.R.Stephens. Landscapes and effective fitness. Comments Theori. Biol., 8:389-431, 2002.
- C. M. Reidys and P. F. Stadler. Combinatorial landscapes. SIAM Rev., 44(1):3-54, 2002.
- J. Rowe, D. Whitley, L. Barbulescu, and J.-P. Watson. Properties of gray and binary representations. Evol. Comput., 12(1):47-76, 2004.
- J. E. Rowe, M. D. Vose, and A. H. Wright. Group properties of crossover and mutation. Evol. Comput., 10(2):151-184, 2002.
- J. E. Rowe, M. D. Vose, and A. H. Wright. Structural search spaces and genetic operators. Evol. Comput., 12(4):461-493, 2004.
- C. Schumacher, M. D. Vose, and L. D. Whitley. The no free lunch and problem description length. In L. Spector et al. editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 565-570, San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.
- M. D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, MA, USA, 1998.
- I. Wegener. Towards a theory of randomized search heuristics. In B. Rovan and P. Vojtás, editors, MFCS, volume 2747 of Lecture Notes in Computer Science, pages 125-141. Springer, 2003.
- I. Wegener. Randomized search heuristics as an alternative to exact optimization. In W. Lenski, editor, Logic versus Approximation, Essays Dedicated to Michael M. Richter on the Occasion of his 65th Birthday, volume 3075 of Lecture Notes in Computer Science, pages 138-149. Springer, 2004.
- D. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. Evolutionary Computation, 1(1):67-82, 1997.