Structure, mineralogy and dynamics of the lowermost mantle
2010, Mineralogy and Petrology
https://doi.org/10.1007/S00710-009-0068-ZAbstract
The 2004-discovery of the post-perovskite transition initiated a vigorous effort in high-pressure, high-temperature mineralogy and mineral physics, seismology and geodynamics aimed at an improved understanding of the structure and dynamics of the D"-zone. The phase transitions in basaltic and peridotitic lithologies under pT-conditions of the lowermost mantle can explain a series of previously enigmatic seismic discontinuities. Some of the other seismic properties of the lowermost mantle are also consistent with the changes in physical properties related to the perovskite (pv) to post-perovskite (ppv) transition. After more than 25 years of seismic tomography, the lowermost mantle structure involving the sub-Pacific and sub-African Large Low Shear-Velocity Provinces (LLSVPs) has become a robust feature. The two large antipodal LLSVPs are surrounded by wide zones of high Vs under the regions characterized by Mesozoic to recent subduction. The D" is further characterized by a negative correlation between shear and bulk sound velocity which could be partly related to an uneven distribution of pv and ppv. Ppv has higher VS and lower \( V_{\Phi } \) (bulk sound speed) than pv and may be present in thicker layers in the colder regions of D". Seismic observations and geodynamic modelling indicate relatively steep and sharp boundaries of the 200-500 km thick LLSVPs. These features, as well as independent evidence for their long-term stability, indicate that they are intrinsically denser than the surrounding mantle. Mineral physics data demonstrate that basaltic lithologies are denser than peridotite throughout the lowermost mantle and undergo incremental densification due to the pvppv- transition at slightly shallower levels than peridotite. The density contrasts may facilitate the partial separation and accumulation of basaltic patches and slivers at the margins of the thermochemical piles (LLSVPs). The slopes of these relatively steep margins towards the adjacent horizontal core-mantle boundary (CMB) constitute a curved (concave) thermal boundary layer, favourable for the episodic generation of large mantle plumes. Reconstruction of the original positions of large igneous provinces formed during the last 300 Ma, using a paleomagnetic global reference frame, indicates that nearly all of them erupted above the margins of the LLSVPs. Fe/Mg-partitioning between pv, ppv and ferropericlase (fp) is important for the phase and density relations of the lower mantle. Electronic spin transition of Fe2+ and Fe3+ in the different phases may influence the Fe/Mg-partitioning and the radiative thermal conductivity in the lowermost mantle. The experimental determination of the \( {K_D}{^{Fe/Mg}_{pv/fp}}\left[ { = {{\left( {Fe/Mg} \right)}_{pv}}/{{\left( {Fe/Mg} \right)}_{fp}}} \right] \) and \( {K_D}{^{Fe/Mg}_{ppv/fp}} \) is technologically challenging. Most studies have found a \( {K_D}{^{Fe/Mg}_{pv/fp}} \) of 0.1-0.3 and a higher Fe/Mg-ratio in ppv than in pv. The experimental temperature is important, with the partitioning approaching unity with increasing temperature. Although charge-coupled substitutions of the trivalent cations Al and Fe3+ seem to be important in both pv and ppv (especially in basaltic compositions), the complicating crystal-chemistry effects of these cations are not fully clarified. The two anti-podal thermochemical piles as well as the thin ultra-low velocity zones next to the CMB may represent geochemically enriched reservoirs that have remained largely isolated from the convecting mantle through a major part of Earth history. The existence of such “hidden” reservoirs have previously been suggested in order to account for the imbalance between the inferred composition of the geochemically accessible convecting mantle and the observed heat flow from the Earth and chondritic models for the bulk Earth.
References (138)
- Akber-Knutson S, Steinle-Neumann G, Asimow PD (2005) Effect of Al on the sharpness of the MgSiO 3 perovskite to postperovskite phase transition. Geophys Res Lett 32:L14303
- Andrault D, Bolfan-Casanova N (2001) High-pressure phase trans- formations in the MgFe 2 O 4 and Fe 2 O 3 -MgSiO 3 systems. Phys Chem Mineral 28:211-217
- Anderson DL (1982) Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297:391-393
- Asahara Y, Frost DJ, Rubie DC (2007) Partitioning of FeO between magnesiowustite and liquid iron at high pressures and temper- atures: implications for the composition of the Earth's outer core. Earth Planet Sci Lett 257:435-449
- Auzende A-L, Badro J, Ryerson FJ, Weber PK, Fallon SJ, Addad A, Siebert J, Fiquet G (2008) Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet Sci Lett 269:164-174
- Avants M, Lay T, Russell SA, Garnero EJ (2006) Shear-velocity variation within the D″ region beneath the Central Pacific. J Geophys Res 111:B05305. doi:10.1029/2004JB003270
- Badro J, Fiquet G, Guyot G, Rueff J-P, Stuzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth's mantle: toward a deep lower mantle discontinuity. Science 300:383-386
- Badro J, Rueff J-P, Vanko G, Monaco G, Fiquet G, Guyot G (2004) Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305:789-791
- Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosys 3:2001GC000168
- Bercovici D (2003) The generation of plate tectonics from mantle convection. Earth Planet Sci Lett 205:107-121
- Boffa-Ballaran T, Trønnes RG, Frost DJ (2007) Equations of state of CaIrO 3 perovskite and post-perovskite phases. Am Mineral 92:1760-1763
- Boyet M, Carlson RW (2005) 142 Nd evidence for early (4.53 Ga) global differentiation of the silicate Earth. Science 309:576-581
- Boyet M, Carlson RW (2006) A new geochemical model for the Earth's mantle inferred from 146 Sm-142 Nd systematics. Earth Planet Sci Lett 250:254-268
- Brandon AD, Walker RJ, Morgan JW, Norman MD, Prichard HM (1998) Coupled 186 Os and 187 Os evidence for core-mantle interaction. Science 280:1570-1573
- Bullen KE (1949) Compressibility-pressure hypothesis and the Earth's interior. Mon Not R Astr Soc 5:355-368
- Burke K, Torsvik TH (2004) Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci Lett 227:531-538
- Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume Generation Zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet Sci Lett 265:49-60
- Caracas R, Cohen RE (2005) Effect of chemistry on the stability and elasticity of the perovskite and postperovskite phases in the MgSiO 3 -FeSiO 3 -Al 2 O 3 system and implications for the lower- most mantle. Geophys Res Lett 32:L16310
- Caro G, Bourdon B, Halliday AN, Quitte G (2008) Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452:336- 339
- Corgne A, Keshav S, Fei Y, McDonough WF (2007) How much potassium is in the Earth's core? New insights from partitioning experiments. Earth Planet Sci Lett 256:567-576
- Davaille A, Girard F, Le Bars M (2002) How to anchor hotspots in a convecting mantle? Earth Planet Sci Lett 203:621-634
- Davaille A, Stutzmann E, Silveira G, Besse J, Courtillot V (2005) Convective patterns under the Indo-Atlantic box. Earth Planet Sci Lett 239:233-252
- Davies GF (1998) Plates, plumes, mantle convection and mantle evolution. In: Jackson I (ed) The Earth's mantle. Composition, structure and evolution. Cambridge Univ Press, 228-258
- Dobson DP, Brodholt JP (2005) Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature 434:371-374
- Dziewonski AM, Anderson DL (1984) Seismic tomography of the Earth's interior. Am Scientist 72:483-494
- Forte AM, Mitrovica JX (2001) Deep-mantle high viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410:1049-1056
- Frost DJ (2003) The structure and sharpness of (Mg, Fe)2SiO4 phase transformations in the transition zone. Earth Planet Sci Lett 216:313-328
- Frost DJ, Liebske C, Langenhorst F, McCammon CA, Trennes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428:409-412
- Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth's lower mantle. Science 230:626-628
- Garnero EJ, Lay T, McNamara AK (2007) Implications of lower- mantled structural heterogeneity for the existence and nature of whole-mantled plumes. In: Foulger GR, Jurdy DM (eds) The origin of melting anomalies: plates, plumes and planetary processes. Geol Soc Am Spec Pap 430:79-102
- Goncharov AF, Haugen BD, Struzhkin VV, Beck P, Jacobsen SD (2008) Radiative conductivity in the Earth's lower mantle. Nature 456:231-234
- Guignot N, Andrault D, Morard G, Bolfan-Casanova N, Mezouar M (2007) Thermodynamic properties of post-perovskite phase MgSiO 3 determined experimentally at core-mantled boundary P-T conditions. Earth Planet Sci Lett 256:162-168
- Helffrich GR, Wood BJ (1996) 410 km discontinuity sharpness and the form of the olivine phase diagram: resolution of apparent seismic contradictions. Geophys J Int 126:7-12
- Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post- perovskite phase boundary and structure of the Earth's lowermost mantle. Nature 434:882-886
- Herzberg C, Raterron P, Zhang J (2000) New experimental observa- tions on the anhydrous solidus for peridotite KLB-1. Geochem Geophys Geosyst 1:2000GC000089
- Hirose K (2006) Postperovskite phase transition and its geophysical implications. Rev Geophys 44:RG3001
- Hirose K, Fei Y, Ma Y, Mao H-K (1999) The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397:53-56
- Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239-251
- Hofmeister AM (2006) Is low-spin Fe 2+ present in Earth's mantle? Earth Planet Sci Lett 243:44-52
- Holzapfel C, Rubie DC, Frost DJ, Langenhorst F (2005) Fe-Mg interdiffusion in (Mg,Fe)SiO 3 perovskite and lower mantle reequilibration. Science 309:1707-1710
- Hutko AR, Lay T, Garnero EJ, Revenaugh J (2006) Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature 441:333-336
- Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO 3 post-perovskite phase in the Earth's lowermost mantle. Nature 430:442-445
- Irifune T, Tsuchiya T (2007) Mineralogy of the Earth -Phase transitions and mineralogy of the lower mantle. In: Price GD and Schubert G (eds) Treatise on Geophysics, Vol 2 Mineral Physics, 33-62
- Ito E, Kubo A, Katsura T, Walter MJ (2004) Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys Earth Planet Int 143- 144:397-406
- Jacobsen SB, Wasserburg GJ (1979) The mean age of mantle and crustal reservoirs. J Geophys Res 84:7411-7427
- Karki BB, Stixrude L, Crain J (1997) Ab initio elasticity of the three high- pressure polymorphs of silica. Geophys Res Lett 24:3269-3272
- Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881-1884
- Keppler H, Dubrovinsky LS, Narygina O, Kantor I (2008) Optical absorption and radiative thermal conductivity of silicate perov- skite to 125 gigapascals. Science 322:1529-1532
- Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252-255
- Knittle E, Jeanloz R (1989) Simulating the core-mantle boundary: an experimental study of high-pressure reactions between silicates and liquid iron. Geophys Res Lett 16:609-612
- Knittle E, Jeanloz R (1991) Earth's core-mantle boundary: results of experiments at high pressures and temperatures. Science 251:1438-1443
- Kobayashi Y, Kondo T, Ohtani E, Hirao N, Miyajima N, Yagi T, Nagase T, Kikegawa T (2005) Fe-Mg partitioning between (Mg, Fe)SiO 3 postperovskite, perovskite, and magnesiowustite in the Earth's lower mantle. Geophys Res Lett 32:L19301
- Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450:866- 869
- Lay T (2005) The deep mantle thermo-chemical boundary layer: the putative mantle plume source. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Pap 388:193-205
- Lay T, Helmberger DV (1983) A lower mantle S-wave triplication and the shear velocity structure of D″. Geophys J R Astron Soc 75:799-838
- Lay T, Williams Q, Garnero EJ (1998) The core-mantle boundary layer and deep Earth dynamics. Nature 392:461-468
- Lay T, Garnero EJ, Williams Q (2004) Partial melting in a thermo- chemical boundary layer at the base of the mantle. Phys Earth Planet Int 146:441-467
- Lay T, Hernlund J, Garnero E, Thorne MS (2006) A post-perovskite lens and D″ heath flux beneath the central Pacific. Science 314:1272-1276
- Lay T, Hernlund J, Buffett BA (2008) Core-mantle boundary heat flow. Nature Geosci 1:25-32
- Lee C, Luffi P, Plank T, Dalton H, Leeman W, Hoink T, Li J, Masters G (2008) Secular changes in the style of mantle melting and mantle differentiation as constrained by the depths and temper- atures of magma genesis. Eos Trans Am Geophys Union 89(53) Fall Meet Suppl Abstr DI34A-03
- Li J (2007) Electronic transitions and spin states in the lower mantle. In: Hirose K, Brodholt J, Lay T, Yuen D (eds) Post-perovskite. The last mantle phase transition. Am Geophys Union Geophys Monogr 174:47-68
- Lin JF, Jacobsen SD, Wentzcovitch RM (2007a) Electronic spin transition of iron in the Earth's deep mantle. Eos Trans Am Geophys Union 88:13-17
- Lin JF, Vanko G, Jacobsen SD, Iota V, Struzhkin VV, Prapenka VB, Kuznetsov A, Yoo C-S (2007b) Spin transition zone in Earth's lower mantle. Science 317:1740-1743
- Lin J-F, Watson H, Vanko G, Alp EE, Prakapenka VB, Dera P, Stuzhkin VV, Kubo A, Zhao J, McCammon C, Evans WJ (2008) Intermediate-spin ferrous iron in lowermost mantle post- perovskite and perovskite. Nature Geosci 1:688-691
- Luguet A, Pearson DG, Nowell GM, Dreher ST, Coggon JA, Spetsius ZV, Parman SW (2008) Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science 319:453-456
- Lundin S, Catalli K, Santillan J, Shim SH, Prakapenka VB, Kunz M, Meng Y (2008) Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Int 168:97- 102
- Malamud BD, Turcotte DL (1999) How many plumes are there? Earth Planet Sci Lett 174:113-124
- Mao WL, Shen G, Prakapenka VB, Meng Y, Cambell AJ, Heinz D, Shu J, Hemley RJ, Mao HK (2004) Ferromagnesian postper- ovskite silicates in the D″ layer of the Earth. Proc Natl Acad Sci USA 101:15867-15869
- Mao WL, Meng Y, Shen G, Prakapenka VB, Campbell AJ et al (2005) Iron-rich silicates in the Earth's D″ layer. Proc Natl Acad Sci USA 102:9751-9753
- Mao WL, Mao H-K, Sturhahn W, Zhao J, Prakapenka VB, Meng Y, Shu J, Fei Y, Memley RJ (2006) Iron-rich postperovskite and the origin of ultralow-velocity zones. Science 312:564-565
- Masters G, Laske G, Bolton H, Dziewonski AM (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In: Karato S-I, Forte AM, Liebermann RC, Masters G, Stixrude L (eds) Earth's deep interior: mineral physics and seismic tomography from the atomic to the global scale, Am. Geophys. Union, Washington, DC 63-87
- Maupin V, Garnero EJ, Lay T, Fouch MJ (2005) Azimuthal anisotropy in the D″ layer beneath the Caribbean. J Geophys Res 110:10.1029/2004JB003506
- McCammon C, Kantor I, Narygina O, Rouquette J, Ponkratz U, Sergueev I, Mezouar M, Prapenka V, Dubrovinsky L (2008) Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nature Geosci 1:684-687
- McNamara AK, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136-1139
- Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finitefrequency tomogra- phy. Geochem Geophys Geosyst 11:doi:10.1029/2006GC001248
- Mosenfelder JP, Asimow PD, Ahrens TJ (2007) Thermodynamic properties of Mg 2 SiO 4 liquid at ultra-high pressures for shock measurements to 200 GPa on forsterite and wadsleyite. J Geophys Res 112:B06208. doi:10.1029/2006JB004364
- Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post- perovskite phase transition in MgSiO3. Science 304:855-858
- Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lower mantle. Geophys Res Lett 32:doi:101029/2004GL021956
- Nishio-Hamane D, Yagi T (2009) Equations of state of postperovskite phases in the MgSiO 3 -FeSiO 3 -FeAlO 3 -system. Phys Earth Planet Int 175:145-150
- Nishio-Hamane D, Nagai T, Fujino K, Seto Y, Takafuji N (2005) Fe 3+ and Al solubilities in MgSiO 3 perovskite: implication of the Fe 3 + AlO 3 substitution in MgSiO 3 perovskite at the lower mantle condition. Geophys Res Lett 32:doi:101029/2005GL023529
- Nishio-Hamane D, Seto Y, Fujino K, Nagai T (2008) Effect of FeAlO 3 incorporation into MgSiO 3 on the bulk modulus of perovskite. Phys Earth Planet Int 166:219-225
- Oganov AR, Ono S (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO 3 in Earth's D″ layer. Nature 430:445-448
- Oganov AR, Ono S (2005) The high-pressure phase of alumina and implications for the Earth's D″ layer. Proc Nat Acad Sci 102:10828-10831
- Ohta K, Hirose K, Lay T, Sata N, Ohishi Y (2008) Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core-mantle boundary. Earth Planet Sci Lett 267:107-117
- Ohtani E, Sakai T (2008) Recent advances in the study of mantle phase transitions. Phys Earth Planet Int 170:240-247
- O'Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium- 142 evidence for Hadean mafic crust. Science 321:1828-1831
- O'Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of mantle differentiation and crustal growth. J Geophys Res 84:6091-6101
- Ono S (2008) Experimental constraints on the temperature profile in the lower mantle. Phys Earth Planet Int 170:240-247
- Ono S, Ohishi Y (2005) In situ X-ray observation of phase transformations in Fe 2 O 3 at high pressures and high temper- atures. J Phys Chem Solids 66:1714-1720
- Ono S, Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO 3 -type phase in MgSiO 3 and pyrolitic mantle composition. Earth Planet Sci Lett 236:914-932
- Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57-63
- Ono S, Ohishi Y, Isshiki M, Watanuki T (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J Geophys Res 110:10.1029/ 2004JB003196
- Ozawa H, Hirose K, Mitome M, Bando Y, Sata N, Ohishi Y (2008) Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophys Res Lett 35:L05308
- Richards MA, Hager BH (1984) Geoid anomalies in a dynamic Earth. J Geophys Res 89:5987-6002
- Richards MA, Engebretson DC (1992) Large-scale mantle convection and the history of subduction. Nature 355:437-440
- Richards MA, Ricard Y, Lithgow-Bertelloni C, Spada G, Sabadini R (1997) An explanation for Earth long-term rotational stability. Science 275:372-375
- Ritsema J (2005) Global seismic structure maps. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Pap 388:11-18
- Rost S, Garnero EJ, Williams Q, Manga M (2005) Seismic constraints on a possible plume root at the core-mantle boundary. Nature 435:666-669
- Schersten A, Elliot T, Hawkesworth C, Norman M (2004) Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core. Nature 427:234-237
- Shim S-H (2008) The postperovskite transition. Ann Rev Earth Planet Sci 36:569-588
- Shim S-H, Bengtson A, Morgan D, Sturhahn W, Catalli K, Zhao J, Lerche M, Prakapenka V (2009) Electronic and magnetic structures of thed postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proc Nat Acad Sci 106:5508-5512
- Sidorin I, Gurnis M, Helmberger DV (1999) Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286:1326-1331
- Sinmyo R, Hirose K, O'Neill HSC, Okunishi E (2006) Ferric iron in Al-bearing postperovskite. Geophys Res Lett 33:L12S13
- Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/ postperovskite and ferropericlase in the lower mantle. J Geophys Res 113: doi:10.1029/2008JB005730
- Sobolev AV, 19 co-authors (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412-417
- Stackhouse S, Brodholt JP, Price GD (2005a) High temperature elastic anisotropy of the perovskite and postperovskite polymorphs of Al 2 O 3 . Geophys Res Lett 32:L13305
- Stackhouse S, Brodholt JP, Wookey J, Kendall J-M, Price GD (2005b) The effect of temperature on the seismic anisotropy of the perovskite and postperovskite polymorphs of MgSiO 3 . Earth Planet Sci Lett 230:1-10
- Stixrude L (1997) Structure and sharpness of phase transitions and mantle discontinuities. J Geophys Res 102:14835-14852
- Stixrude L, Karki B (2005) Structure and freezing of MgSiO 3 liquid in Earth's lower mantle. Science 310:297-299
- Stixrude L, de Koker N, Sun N, Mookherjee M, Karki B (2009) Thermodynamics of silicate liquids in the deep Earth. Earth Planet Sci Lett 278:226-232
- Steinberger B, Torsvik TH (2008) Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620- 623
- Stølen S, Trønnes RG (2007) The The perovskite to post-perovskite transition in CaIrO 3 : clapeyron slope and changes in bulk and shear moduli by density functional theory. Phys Earth Planet Int 164:50-62
- Takafuji N, Hirose K, Mitome M, Bando Y (2005) Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe)SiO3 perovskite and the light elements in the core. Geophys Res Lett 32:6313
- Tateno S, Hirose K, Sata N, Ohishi Y (2005) Phase relations in Mg 3 Al 2 Si 3 O 12 to 180 GPa: effect of Al on postperovskite phase transition. Geophys Res Lett 32:L15306
- Tateno S, Hirose K, Sata N, Ohishi Y (2009) Determination of the post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth Planet Sci Lett 277:130-136
- Thomas C, Kendall J, Lowman J (2004a) Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet Sci Lett 225:105-113
- Thomas C, Garnero EJ, Lay T (2004b) High-resolution imaging of lowermost mantle structure under the Cocos plate. J Geophys Res 109:B08307
- Tolstikhin I, Hofmann AW (2005) Early crust on top of the Earth's core. Phys. Earth Planet Int 148:109-130
- Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical Earth model with whole mantle convection: the importance of a core- mantle boundary layer (D″) and its early formation. Chem Geol 226:79-99
- Torsvik TH, Smethurst MA, Burke K, Steinberger B (2006) Large Igneous Provinces generated from the margins of the large low- velocity provinces in the deep mantle. Geophys J Int 167:1447- 1460
- Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008a) Long term stability in deep mantle structure: evidence from the ca 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet Sci Lett 267:444-452
- Torsvik TH, Steinberger B, Cocks LRM, Burke K (2008b) Longitude: linking Earth's ancient surface to its deep interior. Earth Planet Sci Lett 276:273-282
- Trønnes RG, Frost DJ (2002) Peridotite melting and mineral-melt partitioning of major and minor elements at 22-24.5 GPa. Earth Planet Sci Lett 197:117-131
- Tsuchiya T, Tsuchiya J (2006) Effect of impurity on the elasticity of perovskite and postperovskite: velocity contrast across the postperovskite transition in (Mg,Fe,Al)(Si,Al)O 3 . Geophys Res Lett 33:L12S04
- Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO 3 perovskite in the earth's lower mantle. Earth Planet Sci Lett 224:241-248
- Upadhyay D, Scherer EE, Mezger K (2009) 142 Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459:1118- 1121 van der Hilst RD, Karason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science 283:1885-1888
- van der Hilst RD, de Hoop MV, Wang P, Shim S-H, Ma P, Tenorio L (2007) Seismostratigraphy and thermal structure of Earth's core- mantle boundary region. Science 315:1813-1817
- van Keken PE, Hauri EH, Ballentine CJ (2002) Mantle mixing: the generation, preservation, and destruction of chemical heteroge- neity. Ann Rev Earth Planet Sci 30:493-525
- Vanpeteghem CB, Angel RJ, Ross NL, Jacobsen SD, Dobson DP, Litasov KD, Ohtani E (2006) Al, Fe substitution in the MgSiO3 perovskite structure: a single-crystal X-ray diffraction study. Phys Earth Planet Int 155:96-103
- Walter MJ, Kubo A, Yoshino T, Brodholt J, Koga KT, Ohishi Y (2004) Phase relations and equation-of-state of aluminous Mg- silicate perovskite and implications for Earth´s lower mantle. Earth Planet Sci Lett 222:501-516
- Walter MJ, Trønnes RG, Armstrong LS, Lord OT, Caldwell WA, Clarke SM (2006) Subsolidus phase relations and perovskite compressibility in the system MgO-AlO 1.5 -SiO 2 with implica- tions for the Earth's lower mantle. Earth Planet Sci Lett 248:77- 89
- Wookey J, Kendall, JM (2007) Seismic anisotropy and the lowermost mantle. In: Hirose K, Brodholt J, Lay T, Yuen D (eds) Post- perovskite. The last mantle phase transition. Am Geophys Union Geophys Monogr 174:171-189
- Wookey J, Stackhouse S, Kendall JM, Brodholt J, Price D (2005) Efficacy of the post-perovskite phase as an explanation for the lowermost-mantle seismic properties. Nature 438:1004-1007
- Yamazaki D, Yoshino T, Ohfuji H, Ando J-I, Yoneda A (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on postperovskite phase. Earth Planet Sci Lett 252:372-378
- Zerr A, Diegler A, Bohler R (1998) Solidus of Earth's deep mantle. Science 281:243-246
- Zhang F, Oganov AR (2006a) Mechanisms of Al 3+ incorporation in MgSiO 3 postperovskite at high pressures. Earth Planet Sci Lett 248:54-61
- Zhang F, Oganov AR (2006b) Valence state and spin transitions of iron in Earth's mantle silicates. Earth Planet Sci Lett 249:436- 443
- Zhang JZ, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5 to 22.5 GPa. J Geophys Res 99:17729-