Academia.eduAcademia.edu

Outline

Structure, mineralogy and dynamics of the lowermost mantle

2010, Mineralogy and Petrology

https://doi.org/10.1007/S00710-009-0068-Z

Abstract

The 2004-discovery of the post-perovskite transition initiated a vigorous effort in high-pressure, high-temperature mineralogy and mineral physics, seismology and geodynamics aimed at an improved understanding of the structure and dynamics of the D"-zone. The phase transitions in basaltic and peridotitic lithologies under pT-conditions of the lowermost mantle can explain a series of previously enigmatic seismic discontinuities. Some of the other seismic properties of the lowermost mantle are also consistent with the changes in physical properties related to the perovskite (pv) to post-perovskite (ppv) transition. After more than 25 years of seismic tomography, the lowermost mantle structure involving the sub-Pacific and sub-African Large Low Shear-Velocity Provinces (LLSVPs) has become a robust feature. The two large antipodal LLSVPs are surrounded by wide zones of high Vs under the regions characterized by Mesozoic to recent subduction. The D" is further characterized by a negative correlation between shear and bulk sound velocity which could be partly related to an uneven distribution of pv and ppv. Ppv has higher VS and lower \( V_{\Phi } \) (bulk sound speed) than pv and may be present in thicker layers in the colder regions of D". Seismic observations and geodynamic modelling indicate relatively steep and sharp boundaries of the 200-500 km thick LLSVPs. These features, as well as independent evidence for their long-term stability, indicate that they are intrinsically denser than the surrounding mantle. Mineral physics data demonstrate that basaltic lithologies are denser than peridotite throughout the lowermost mantle and undergo incremental densification due to the pvppv- transition at slightly shallower levels than peridotite. The density contrasts may facilitate the partial separation and accumulation of basaltic patches and slivers at the margins of the thermochemical piles (LLSVPs). The slopes of these relatively steep margins towards the adjacent horizontal core-mantle boundary (CMB) constitute a curved (concave) thermal boundary layer, favourable for the episodic generation of large mantle plumes. Reconstruction of the original positions of large igneous provinces formed during the last 300 Ma, using a paleomagnetic global reference frame, indicates that nearly all of them erupted above the margins of the LLSVPs. Fe/Mg-partitioning between pv, ppv and ferropericlase (fp) is important for the phase and density relations of the lower mantle. Electronic spin transition of Fe2+ and Fe3+ in the different phases may influence the Fe/Mg-partitioning and the radiative thermal conductivity in the lowermost mantle. The experimental determination of the \( {K_D}{^{Fe/Mg}_{pv/fp}}\left[ { = {{\left( {Fe/Mg} \right)}_{pv}}/{{\left( {Fe/Mg} \right)}_{fp}}} \right] \) and \( {K_D}{^{Fe/Mg}_{ppv/fp}} \) is technologically challenging. Most studies have found a \( {K_D}{^{Fe/Mg}_{pv/fp}} \) of 0.1-0.3 and a higher Fe/Mg-ratio in ppv than in pv. The experimental temperature is important, with the partitioning approaching unity with increasing temperature. Although charge-coupled substitutions of the trivalent cations Al and Fe3+ seem to be important in both pv and ppv (especially in basaltic compositions), the complicating crystal-chemistry effects of these cations are not fully clarified. The two anti-podal thermochemical piles as well as the thin ultra-low velocity zones next to the CMB may represent geochemically enriched reservoirs that have remained largely isolated from the convecting mantle through a major part of Earth history. The existence of such “hidden” reservoirs have previously been suggested in order to account for the imbalance between the inferred composition of the geochemically accessible convecting mantle and the observed heat flow from the Earth and chondritic models for the bulk Earth.

References (138)

  1. Akber-Knutson S, Steinle-Neumann G, Asimow PD (2005) Effect of Al on the sharpness of the MgSiO 3 perovskite to postperovskite phase transition. Geophys Res Lett 32:L14303
  2. Andrault D, Bolfan-Casanova N (2001) High-pressure phase trans- formations in the MgFe 2 O 4 and Fe 2 O 3 -MgSiO 3 systems. Phys Chem Mineral 28:211-217
  3. Anderson DL (1982) Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297:391-393
  4. Asahara Y, Frost DJ, Rubie DC (2007) Partitioning of FeO between magnesiowustite and liquid iron at high pressures and temper- atures: implications for the composition of the Earth's outer core. Earth Planet Sci Lett 257:435-449
  5. Auzende A-L, Badro J, Ryerson FJ, Weber PK, Fallon SJ, Addad A, Siebert J, Fiquet G (2008) Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet Sci Lett 269:164-174
  6. Avants M, Lay T, Russell SA, Garnero EJ (2006) Shear-velocity variation within the D″ region beneath the Central Pacific. J Geophys Res 111:B05305. doi:10.1029/2004JB003270
  7. Badro J, Fiquet G, Guyot G, Rueff J-P, Stuzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth's mantle: toward a deep lower mantle discontinuity. Science 300:383-386
  8. Badro J, Rueff J-P, Vanko G, Monaco G, Fiquet G, Guyot G (2004) Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305:789-791
  9. Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosys 3:2001GC000168
  10. Bercovici D (2003) The generation of plate tectonics from mantle convection. Earth Planet Sci Lett 205:107-121
  11. Boffa-Ballaran T, Trønnes RG, Frost DJ (2007) Equations of state of CaIrO 3 perovskite and post-perovskite phases. Am Mineral 92:1760-1763
  12. Boyet M, Carlson RW (2005) 142 Nd evidence for early (4.53 Ga) global differentiation of the silicate Earth. Science 309:576-581
  13. Boyet M, Carlson RW (2006) A new geochemical model for the Earth's mantle inferred from 146 Sm-142 Nd systematics. Earth Planet Sci Lett 250:254-268
  14. Brandon AD, Walker RJ, Morgan JW, Norman MD, Prichard HM (1998) Coupled 186 Os and 187 Os evidence for core-mantle interaction. Science 280:1570-1573
  15. Bullen KE (1949) Compressibility-pressure hypothesis and the Earth's interior. Mon Not R Astr Soc 5:355-368
  16. Burke K, Torsvik TH (2004) Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci Lett 227:531-538
  17. Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume Generation Zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet Sci Lett 265:49-60
  18. Caracas R, Cohen RE (2005) Effect of chemistry on the stability and elasticity of the perovskite and postperovskite phases in the MgSiO 3 -FeSiO 3 -Al 2 O 3 system and implications for the lower- most mantle. Geophys Res Lett 32:L16310
  19. Caro G, Bourdon B, Halliday AN, Quitte G (2008) Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452:336- 339
  20. Corgne A, Keshav S, Fei Y, McDonough WF (2007) How much potassium is in the Earth's core? New insights from partitioning experiments. Earth Planet Sci Lett 256:567-576
  21. Davaille A, Girard F, Le Bars M (2002) How to anchor hotspots in a convecting mantle? Earth Planet Sci Lett 203:621-634
  22. Davaille A, Stutzmann E, Silveira G, Besse J, Courtillot V (2005) Convective patterns under the Indo-Atlantic box. Earth Planet Sci Lett 239:233-252
  23. Davies GF (1998) Plates, plumes, mantle convection and mantle evolution. In: Jackson I (ed) The Earth's mantle. Composition, structure and evolution. Cambridge Univ Press, 228-258
  24. Dobson DP, Brodholt JP (2005) Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature 434:371-374
  25. Dziewonski AM, Anderson DL (1984) Seismic tomography of the Earth's interior. Am Scientist 72:483-494
  26. Forte AM, Mitrovica JX (2001) Deep-mantle high viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410:1049-1056
  27. Frost DJ (2003) The structure and sharpness of (Mg, Fe)2SiO4 phase transformations in the transition zone. Earth Planet Sci Lett 216:313-328
  28. Frost DJ, Liebske C, Langenhorst F, McCammon CA, Trennes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428:409-412
  29. Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth's lower mantle. Science 230:626-628
  30. Garnero EJ, Lay T, McNamara AK (2007) Implications of lower- mantled structural heterogeneity for the existence and nature of whole-mantled plumes. In: Foulger GR, Jurdy DM (eds) The origin of melting anomalies: plates, plumes and planetary processes. Geol Soc Am Spec Pap 430:79-102
  31. Goncharov AF, Haugen BD, Struzhkin VV, Beck P, Jacobsen SD (2008) Radiative conductivity in the Earth's lower mantle. Nature 456:231-234
  32. Guignot N, Andrault D, Morard G, Bolfan-Casanova N, Mezouar M (2007) Thermodynamic properties of post-perovskite phase MgSiO 3 determined experimentally at core-mantled boundary P-T conditions. Earth Planet Sci Lett 256:162-168
  33. Helffrich GR, Wood BJ (1996) 410 km discontinuity sharpness and the form of the olivine phase diagram: resolution of apparent seismic contradictions. Geophys J Int 126:7-12
  34. Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post- perovskite phase boundary and structure of the Earth's lowermost mantle. Nature 434:882-886
  35. Herzberg C, Raterron P, Zhang J (2000) New experimental observa- tions on the anhydrous solidus for peridotite KLB-1. Geochem Geophys Geosyst 1:2000GC000089
  36. Hirose K (2006) Postperovskite phase transition and its geophysical implications. Rev Geophys 44:RG3001
  37. Hirose K, Fei Y, Ma Y, Mao H-K (1999) The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397:53-56
  38. Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239-251
  39. Hofmeister AM (2006) Is low-spin Fe 2+ present in Earth's mantle? Earth Planet Sci Lett 243:44-52
  40. Holzapfel C, Rubie DC, Frost DJ, Langenhorst F (2005) Fe-Mg interdiffusion in (Mg,Fe)SiO 3 perovskite and lower mantle reequilibration. Science 309:1707-1710
  41. Hutko AR, Lay T, Garnero EJ, Revenaugh J (2006) Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature 441:333-336
  42. Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO 3 post-perovskite phase in the Earth's lowermost mantle. Nature 430:442-445
  43. Irifune T, Tsuchiya T (2007) Mineralogy of the Earth -Phase transitions and mineralogy of the lower mantle. In: Price GD and Schubert G (eds) Treatise on Geophysics, Vol 2 Mineral Physics, 33-62
  44. Ito E, Kubo A, Katsura T, Walter MJ (2004) Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys Earth Planet Int 143- 144:397-406
  45. Jacobsen SB, Wasserburg GJ (1979) The mean age of mantle and crustal reservoirs. J Geophys Res 84:7411-7427
  46. Karki BB, Stixrude L, Crain J (1997) Ab initio elasticity of the three high- pressure polymorphs of silica. Geophys Res Lett 24:3269-3272
  47. Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881-1884
  48. Keppler H, Dubrovinsky LS, Narygina O, Kantor I (2008) Optical absorption and radiative thermal conductivity of silicate perov- skite to 125 gigapascals. Science 322:1529-1532
  49. Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252-255
  50. Knittle E, Jeanloz R (1989) Simulating the core-mantle boundary: an experimental study of high-pressure reactions between silicates and liquid iron. Geophys Res Lett 16:609-612
  51. Knittle E, Jeanloz R (1991) Earth's core-mantle boundary: results of experiments at high pressures and temperatures. Science 251:1438-1443
  52. Kobayashi Y, Kondo T, Ohtani E, Hirao N, Miyajima N, Yagi T, Nagase T, Kikegawa T (2005) Fe-Mg partitioning between (Mg, Fe)SiO 3 postperovskite, perovskite, and magnesiowustite in the Earth's lower mantle. Geophys Res Lett 32:L19301
  53. Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450:866- 869
  54. Lay T (2005) The deep mantle thermo-chemical boundary layer: the putative mantle plume source. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Pap 388:193-205
  55. Lay T, Helmberger DV (1983) A lower mantle S-wave triplication and the shear velocity structure of D″. Geophys J R Astron Soc 75:799-838
  56. Lay T, Williams Q, Garnero EJ (1998) The core-mantle boundary layer and deep Earth dynamics. Nature 392:461-468
  57. Lay T, Garnero EJ, Williams Q (2004) Partial melting in a thermo- chemical boundary layer at the base of the mantle. Phys Earth Planet Int 146:441-467
  58. Lay T, Hernlund J, Garnero E, Thorne MS (2006) A post-perovskite lens and D″ heath flux beneath the central Pacific. Science 314:1272-1276
  59. Lay T, Hernlund J, Buffett BA (2008) Core-mantle boundary heat flow. Nature Geosci 1:25-32
  60. Lee C, Luffi P, Plank T, Dalton H, Leeman W, Hoink T, Li J, Masters G (2008) Secular changes in the style of mantle melting and mantle differentiation as constrained by the depths and temper- atures of magma genesis. Eos Trans Am Geophys Union 89(53) Fall Meet Suppl Abstr DI34A-03
  61. Li J (2007) Electronic transitions and spin states in the lower mantle. In: Hirose K, Brodholt J, Lay T, Yuen D (eds) Post-perovskite. The last mantle phase transition. Am Geophys Union Geophys Monogr 174:47-68
  62. Lin JF, Jacobsen SD, Wentzcovitch RM (2007a) Electronic spin transition of iron in the Earth's deep mantle. Eos Trans Am Geophys Union 88:13-17
  63. Lin JF, Vanko G, Jacobsen SD, Iota V, Struzhkin VV, Prapenka VB, Kuznetsov A, Yoo C-S (2007b) Spin transition zone in Earth's lower mantle. Science 317:1740-1743
  64. Lin J-F, Watson H, Vanko G, Alp EE, Prakapenka VB, Dera P, Stuzhkin VV, Kubo A, Zhao J, McCammon C, Evans WJ (2008) Intermediate-spin ferrous iron in lowermost mantle post- perovskite and perovskite. Nature Geosci 1:688-691
  65. Luguet A, Pearson DG, Nowell GM, Dreher ST, Coggon JA, Spetsius ZV, Parman SW (2008) Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science 319:453-456
  66. Lundin S, Catalli K, Santillan J, Shim SH, Prakapenka VB, Kunz M, Meng Y (2008) Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Int 168:97- 102
  67. Malamud BD, Turcotte DL (1999) How many plumes are there? Earth Planet Sci Lett 174:113-124
  68. Mao WL, Shen G, Prakapenka VB, Meng Y, Cambell AJ, Heinz D, Shu J, Hemley RJ, Mao HK (2004) Ferromagnesian postper- ovskite silicates in the D″ layer of the Earth. Proc Natl Acad Sci USA 101:15867-15869
  69. Mao WL, Meng Y, Shen G, Prakapenka VB, Campbell AJ et al (2005) Iron-rich silicates in the Earth's D″ layer. Proc Natl Acad Sci USA 102:9751-9753
  70. Mao WL, Mao H-K, Sturhahn W, Zhao J, Prakapenka VB, Meng Y, Shu J, Fei Y, Memley RJ (2006) Iron-rich postperovskite and the origin of ultralow-velocity zones. Science 312:564-565
  71. Masters G, Laske G, Bolton H, Dziewonski AM (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In: Karato S-I, Forte AM, Liebermann RC, Masters G, Stixrude L (eds) Earth's deep interior: mineral physics and seismic tomography from the atomic to the global scale, Am. Geophys. Union, Washington, DC 63-87
  72. Maupin V, Garnero EJ, Lay T, Fouch MJ (2005) Azimuthal anisotropy in the D″ layer beneath the Caribbean. J Geophys Res 110:10.1029/2004JB003506
  73. McCammon C, Kantor I, Narygina O, Rouquette J, Ponkratz U, Sergueev I, Mezouar M, Prapenka V, Dubrovinsky L (2008) Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nature Geosci 1:684-687
  74. McNamara AK, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136-1139
  75. Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finitefrequency tomogra- phy. Geochem Geophys Geosyst 11:doi:10.1029/2006GC001248
  76. Mosenfelder JP, Asimow PD, Ahrens TJ (2007) Thermodynamic properties of Mg 2 SiO 4 liquid at ultra-high pressures for shock measurements to 200 GPa on forsterite and wadsleyite. J Geophys Res 112:B06208. doi:10.1029/2006JB004364
  77. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post- perovskite phase transition in MgSiO3. Science 304:855-858
  78. Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lower mantle. Geophys Res Lett 32:doi:101029/2004GL021956
  79. Nishio-Hamane D, Yagi T (2009) Equations of state of postperovskite phases in the MgSiO 3 -FeSiO 3 -FeAlO 3 -system. Phys Earth Planet Int 175:145-150
  80. Nishio-Hamane D, Nagai T, Fujino K, Seto Y, Takafuji N (2005) Fe 3+ and Al solubilities in MgSiO 3 perovskite: implication of the Fe 3 + AlO 3 substitution in MgSiO 3 perovskite at the lower mantle condition. Geophys Res Lett 32:doi:101029/2005GL023529
  81. Nishio-Hamane D, Seto Y, Fujino K, Nagai T (2008) Effect of FeAlO 3 incorporation into MgSiO 3 on the bulk modulus of perovskite. Phys Earth Planet Int 166:219-225
  82. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO 3 in Earth's D″ layer. Nature 430:445-448
  83. Oganov AR, Ono S (2005) The high-pressure phase of alumina and implications for the Earth's D″ layer. Proc Nat Acad Sci 102:10828-10831
  84. Ohta K, Hirose K, Lay T, Sata N, Ohishi Y (2008) Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core-mantle boundary. Earth Planet Sci Lett 267:107-117
  85. Ohtani E, Sakai T (2008) Recent advances in the study of mantle phase transitions. Phys Earth Planet Int 170:240-247
  86. O'Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium- 142 evidence for Hadean mafic crust. Science 321:1828-1831
  87. O'Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of mantle differentiation and crustal growth. J Geophys Res 84:6091-6101
  88. Ono S (2008) Experimental constraints on the temperature profile in the lower mantle. Phys Earth Planet Int 170:240-247
  89. Ono S, Ohishi Y (2005) In situ X-ray observation of phase transformations in Fe 2 O 3 at high pressures and high temper- atures. J Phys Chem Solids 66:1714-1720
  90. Ono S, Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO 3 -type phase in MgSiO 3 and pyrolitic mantle composition. Earth Planet Sci Lett 236:914-932
  91. Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57-63
  92. Ono S, Ohishi Y, Isshiki M, Watanuki T (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J Geophys Res 110:10.1029/ 2004JB003196
  93. Ozawa H, Hirose K, Mitome M, Bando Y, Sata N, Ohishi Y (2008) Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophys Res Lett 35:L05308
  94. Richards MA, Hager BH (1984) Geoid anomalies in a dynamic Earth. J Geophys Res 89:5987-6002
  95. Richards MA, Engebretson DC (1992) Large-scale mantle convection and the history of subduction. Nature 355:437-440
  96. Richards MA, Ricard Y, Lithgow-Bertelloni C, Spada G, Sabadini R (1997) An explanation for Earth long-term rotational stability. Science 275:372-375
  97. Ritsema J (2005) Global seismic structure maps. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Pap 388:11-18
  98. Rost S, Garnero EJ, Williams Q, Manga M (2005) Seismic constraints on a possible plume root at the core-mantle boundary. Nature 435:666-669
  99. Schersten A, Elliot T, Hawkesworth C, Norman M (2004) Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core. Nature 427:234-237
  100. Shim S-H (2008) The postperovskite transition. Ann Rev Earth Planet Sci 36:569-588
  101. Shim S-H, Bengtson A, Morgan D, Sturhahn W, Catalli K, Zhao J, Lerche M, Prakapenka V (2009) Electronic and magnetic structures of thed postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proc Nat Acad Sci 106:5508-5512
  102. Sidorin I, Gurnis M, Helmberger DV (1999) Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286:1326-1331
  103. Sinmyo R, Hirose K, O'Neill HSC, Okunishi E (2006) Ferric iron in Al-bearing postperovskite. Geophys Res Lett 33:L12S13
  104. Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/ postperovskite and ferropericlase in the lower mantle. J Geophys Res 113: doi:10.1029/2008JB005730
  105. Sobolev AV, 19 co-authors (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412-417
  106. Stackhouse S, Brodholt JP, Price GD (2005a) High temperature elastic anisotropy of the perovskite and postperovskite polymorphs of Al 2 O 3 . Geophys Res Lett 32:L13305
  107. Stackhouse S, Brodholt JP, Wookey J, Kendall J-M, Price GD (2005b) The effect of temperature on the seismic anisotropy of the perovskite and postperovskite polymorphs of MgSiO 3 . Earth Planet Sci Lett 230:1-10
  108. Stixrude L (1997) Structure and sharpness of phase transitions and mantle discontinuities. J Geophys Res 102:14835-14852
  109. Stixrude L, Karki B (2005) Structure and freezing of MgSiO 3 liquid in Earth's lower mantle. Science 310:297-299
  110. Stixrude L, de Koker N, Sun N, Mookherjee M, Karki B (2009) Thermodynamics of silicate liquids in the deep Earth. Earth Planet Sci Lett 278:226-232
  111. Steinberger B, Torsvik TH (2008) Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620- 623
  112. Stølen S, Trønnes RG (2007) The The perovskite to post-perovskite transition in CaIrO 3 : clapeyron slope and changes in bulk and shear moduli by density functional theory. Phys Earth Planet Int 164:50-62
  113. Takafuji N, Hirose K, Mitome M, Bando Y (2005) Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe)SiO3 perovskite and the light elements in the core. Geophys Res Lett 32:6313
  114. Tateno S, Hirose K, Sata N, Ohishi Y (2005) Phase relations in Mg 3 Al 2 Si 3 O 12 to 180 GPa: effect of Al on postperovskite phase transition. Geophys Res Lett 32:L15306
  115. Tateno S, Hirose K, Sata N, Ohishi Y (2009) Determination of the post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth Planet Sci Lett 277:130-136
  116. Thomas C, Kendall J, Lowman J (2004a) Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet Sci Lett 225:105-113
  117. Thomas C, Garnero EJ, Lay T (2004b) High-resolution imaging of lowermost mantle structure under the Cocos plate. J Geophys Res 109:B08307
  118. Tolstikhin I, Hofmann AW (2005) Early crust on top of the Earth's core. Phys. Earth Planet Int 148:109-130
  119. Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical Earth model with whole mantle convection: the importance of a core- mantle boundary layer (D″) and its early formation. Chem Geol 226:79-99
  120. Torsvik TH, Smethurst MA, Burke K, Steinberger B (2006) Large Igneous Provinces generated from the margins of the large low- velocity provinces in the deep mantle. Geophys J Int 167:1447- 1460
  121. Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008a) Long term stability in deep mantle structure: evidence from the ca 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet Sci Lett 267:444-452
  122. Torsvik TH, Steinberger B, Cocks LRM, Burke K (2008b) Longitude: linking Earth's ancient surface to its deep interior. Earth Planet Sci Lett 276:273-282
  123. Trønnes RG, Frost DJ (2002) Peridotite melting and mineral-melt partitioning of major and minor elements at 22-24.5 GPa. Earth Planet Sci Lett 197:117-131
  124. Tsuchiya T, Tsuchiya J (2006) Effect of impurity on the elasticity of perovskite and postperovskite: velocity contrast across the postperovskite transition in (Mg,Fe,Al)(Si,Al)O 3 . Geophys Res Lett 33:L12S04
  125. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO 3 perovskite in the earth's lower mantle. Earth Planet Sci Lett 224:241-248
  126. Upadhyay D, Scherer EE, Mezger K (2009) 142 Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459:1118- 1121 van der Hilst RD, Karason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science 283:1885-1888
  127. van der Hilst RD, de Hoop MV, Wang P, Shim S-H, Ma P, Tenorio L (2007) Seismostratigraphy and thermal structure of Earth's core- mantle boundary region. Science 315:1813-1817
  128. van Keken PE, Hauri EH, Ballentine CJ (2002) Mantle mixing: the generation, preservation, and destruction of chemical heteroge- neity. Ann Rev Earth Planet Sci 30:493-525
  129. Vanpeteghem CB, Angel RJ, Ross NL, Jacobsen SD, Dobson DP, Litasov KD, Ohtani E (2006) Al, Fe substitution in the MgSiO3 perovskite structure: a single-crystal X-ray diffraction study. Phys Earth Planet Int 155:96-103
  130. Walter MJ, Kubo A, Yoshino T, Brodholt J, Koga KT, Ohishi Y (2004) Phase relations and equation-of-state of aluminous Mg- silicate perovskite and implications for Earth´s lower mantle. Earth Planet Sci Lett 222:501-516
  131. Walter MJ, Trønnes RG, Armstrong LS, Lord OT, Caldwell WA, Clarke SM (2006) Subsolidus phase relations and perovskite compressibility in the system MgO-AlO 1.5 -SiO 2 with implica- tions for the Earth's lower mantle. Earth Planet Sci Lett 248:77- 89
  132. Wookey J, Kendall, JM (2007) Seismic anisotropy and the lowermost mantle. In: Hirose K, Brodholt J, Lay T, Yuen D (eds) Post- perovskite. The last mantle phase transition. Am Geophys Union Geophys Monogr 174:171-189
  133. Wookey J, Stackhouse S, Kendall JM, Brodholt J, Price D (2005) Efficacy of the post-perovskite phase as an explanation for the lowermost-mantle seismic properties. Nature 438:1004-1007
  134. Yamazaki D, Yoshino T, Ohfuji H, Ando J-I, Yoneda A (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on postperovskite phase. Earth Planet Sci Lett 252:372-378
  135. Zerr A, Diegler A, Bohler R (1998) Solidus of Earth's deep mantle. Science 281:243-246
  136. Zhang F, Oganov AR (2006a) Mechanisms of Al 3+ incorporation in MgSiO 3 postperovskite at high pressures. Earth Planet Sci Lett 248:54-61
  137. Zhang F, Oganov AR (2006b) Valence state and spin transitions of iron in Earth's mantle silicates. Earth Planet Sci Lett 249:436- 443
  138. Zhang JZ, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5 to 22.5 GPa. J Geophys Res 99:17729-