Academia.eduAcademia.edu

Outline

Petrology, elasticity, and composition of the mantle transition zone

1992, Journal of Geophysical Research

https://doi.org/10.1029/92JB00068

Abstract

We compare the predictions of compositional models of the mantle transition zone to observed seismic properties by constructing phase diagrams in the MgO-FeO-CaO-AI203-SiO 2 system and estimating the elasticity of the relevant minerals. Mie-Grfineisen and Birch-Murnaghan finite strain theory are combined with ideal solution theory to extrapolate experimental measurements of thermal and elastic properties to high pressures and temperatures. The resulting thermodynamic potentials are combined with the estimated phase diagrams to predict the density, seismic parameter, and mantle adiabats for a given compositional model. We find that the properties of pyrolite agree well with the observed density and bulk sound velocity of the upper mantle and transition zone. Piclogite significantly underestimates the magnitude of the 400-km velocity discontinuity and overestimates the velocity gradient in the transition zone. Substantially enriching piclogite in AI provides an acceptable fit to the observations. Invoking a chemical boundary layer between the uppermost mantle and transition zone leads to poor agreement with observed seismic properties for the compositions considered. Within the transition zone, the dissolution of garnet to Ca-perovskite near 18 GPa may explain the proposed 520-km seismic discontinuity. Below 700 km depth, all compositions disagree with observed bulk sound velocities, implying that the lower mantle is chemically distinct from the upper mantle.

FAQs

sparkles

AI

What explains the discrepancies in seismic observations of pyrolite and piclogite compositions?add

The study reveals that pyrolite aligns closely with seismic data across the mantle, while piclogite significantly underestimates velocity and density between 400 and 500 km depth.

How did phase transitions affect velocity gradients in the transition zone?add

Anomalous velocity gradients near 18 GPa are attributed to the transformation of garnet to Ca-perovskite, impacting bulk sound velocities across all studied compositions.

When did the analysis of mantle transition zone composition first recognize pressure-induced phase transformations?add

Pressure-induced phase transformations as explanations for seismic velocity gradients in the transition zone were first articulated in the early 1990s, leading to critical insights.

What methodologies were used to synthesize experimental petrologic data for the transition zone?add

The researchers employed a semiempirical thermodynamic potential formalism to derive density and bulk modulus across pressure-temperature regimes, ensuring consistent comparisons with mineral properties.

Why is chemical layering in the upper mantle considered unlikely according to the findings?add

The results indicate that seismic and mineral physics data cannot confirm multiple layers, suggesting that the upper mantle remains chemically distinct from the lower mantle.

References (179)

  1. Akaogi, M., and S. Akimoto, Pyroxene-garnet solid-solution equi- libria in the systems Mg4Si4012-Mg3A12Si3012 and Fe4Si4012- Fe3A12Si3012 at high pressures and temperatures, Phys. Earth Planet. Inter., 15, 90-106, 1977.
  2. Akaogi, M., and S. Akimoto, High-Pressure phase equilibria in a 2+ .2+ garnet lherzolite, with special reference to Mg -Fe partition- ing among constituent minerals, Phys. Earth Planet. Inter., 19, 31-51, 1979.
  3. Akaogi, M., A. Navrotsky, T. Yagi, and S. Akimoto, Pyroxene- garnet transformation: Thermochemistry and elasticity of garnet solid solutions and application to a pyrolite mantle, in High- Pressure Research in Mineral Physics, Geophys. Monogr. Ser., vol. 39, edited by M. H. Manghnani and Y. Syono, pp. 251-260, AGU, Washington, D.C., 1987.
  4. Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel- spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, Thermochemical calculation, and geophysical ap- plication, J. Geophys. Res., 94, 15,671-15,685, 1989.
  5. All•gre, C. J., and D. L. Turcotte, Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands, Geophys. Res. Lett., 12,207-210, 1985.
  6. Anderson, D. L., and J. D. Bass, Mineralogy and composition of the upper mantle, Geophys. Res. Lett., 11,637-640, 1984.
  7. Anderson, D. L., and J. D. Bass, Transition region of the Earth's upper mantle, Nature, 320, 321-328, 1986.
  8. Ashida, T., S. Kume, and E. Ito, Thermodynamic aspects of phase boundary among a-, /3-, and •-Mg2SiO4, in High-Pressure Re- search in Mineral Physics, Geophys. Monogr. Ser., vol. 39, edited by M. H. Manghnani and Y. Syono, pp. 269-274, AGU, Washington, D.C., 1987.
  9. Bass, J. D., Elasticity of grossular and spessartite garnets by Brillouin spectroscopy, J. Geophys. Res., 94, 7621-7628, 1989.
  10. Bass, J. D., and M. Kanzaki, Elasticity of a majorite-pyrope solid solution, Geophys. Res. Lett., 17, 1989-1992, 1990.
  11. Bass, J. D., and D. J. Weidner, Elasticity of single-crystal ortho- ferrosilite, J. Geophys. Res., 89, 4359-4371, 1984.
  12. Bass, J. D., R. C. Liebermann, D. J. Weidner, and S. J. Finch, Elastic Properties from acoustic and volume compression exper- iments, Phys. Earth Planet. Inter., 25, 140-158, 1981.
  13. Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences, 336 pp., McGraw-Hill, New York, 1969.
  14. Bina, C. R., and P. G. Silver, Constraints on lower mantle compo- sition and temperature from density and bulk sound velocity profiles, Geophys. Res. Lett., 17, 1153-1156, 1990.
  15. Bina, C. R., and B. J. Wood, Olivine-Spinel transitions: Experimen- tal and thermodynamic constraints and implications for the nature of the 400-km seismic discontinuity, J. Geophys. Res., 92, 4853- 4866, 1987.
  16. Birch, F., Elasticity and constitution of the Earth's interior, J. Geophys. Res., 57, 227-286, 1952.
  17. Bock, G., and R. Kind, A global survey of S to P and P to S conversions in the upper mantle transition zone, Geophys. J. Int., 107, 117-129, 1991.
  18. Bowman, J. R., and B. L. N. Kennett, An investigation of the upper mantle beneath NW Australia using a hybrid seismograph array, Geophys. J. Int., 101,411-424, 1990.
  19. Buchbinder, G. G. R., A velocity structure of the Earth' s core, Bull. Seismol. Soc. Am., 61,429-456, 1971.
  20. Bukowinski, M. S. T., and G. H. Wolf, Thermodynamically consis- tent decompression: Implications for lower mantle composition, J. Geophys. Res., 95, 12,583-12,593, 1990.
  21. Burdick, L. J., A comparison of the upper mantle structure beneath North America and Europe, J. Geophys. Res., 86, 5926-5936, 1981.
  22. Burdick, L. J., and D. V. Helmberger, The upper mantle P velocity structure of the western United States, J. Geophys. Res., 83, 1699-1712, 1978.
  23. Callen, H. B., Thermodynamics and an Introduction to Thermosta- tistics, 493 pp., John Wiley, New York, 1985.
  24. Cameron, M., S. Sueno, C. T. Prewitt, and J. J. Papike, High- temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite, Am. Mineral., 58, 594-618, 1973.
  25. Chinnery, M. A., and M. N. Toksoz, P-wave velocities in the mantle below 700 km, Bull. Seismol. Soc. Am., 57, 199-226, 1967.
  26. Creager, K. C., and T. H. Jordan, Slab penetration into the lower mantle, J. Geophys. Res., 89, 3031-3049, 1984.
  27. Creager, K. C., and T. H. Jordan, Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific, J. Geophys. Res., 91, 3573-3589, 1986.
  28. Davies, G. F., Geophysical and isotopic constraints on mantle convection: An interim synthesis, J. Geophys. Res., 89, 6017- 6040, 1984.
  29. DePaolo, D. J., Geochemical evolution of the crust and mantle, Rev. Geophys., 21, 1347-1358, 1983.
  30. Derr, J. S., Internal structure of the Earth inferred from free oscillations, J. Geophys. Res., 74, 5202-5220, 1969.
  31. Dey-Sarkar, S. K., and R. A. Wiggins, Upper mantle structure in western Canada, J. Geophys. Res., 81, 3619-3632, 1976.
  32. Dost, B., Upper mantle structure under western Europe from fundamental and higher mode surface waves using the NARS array, Geophys. J. Int., 100, 131-151, 1990.
  33. Duffy, T. S., and D. L. Anderson, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, 1895-1912, 1989.
  34. Dziewonski, A.M., and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25,297-356, 1981.
  35. Fairborn, J. W., Shear wave velocities in the lower mantle, Bull. Seismol. Soc. Am., 59, 1983-1999, 1969.
  36. Fei, Y., H. Mao, and B. O. Mysen, Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res., 96, 2157-2170, 1991.
  37. Fei, Y., H. Mao, J. Shu, G. Parthasarathy, W. Bassett, and J. K., Simultaneous high P-T X ray diffraction study of/3-(Mg,Fe)2SiO4 to 26 GPa and 900 K, J. Geophys. Res., 97, 4489-4495, 1992.
  38. Finger, L. W., and Y. Ohashi, The thermal expansion of diopside to 800øC and a refinement of the crystal structure at 700øC, Am. Mineral., 61,303-310, 1976.
  39. Fukao, Y., Upper mantle P structure on the ocean side of the Japan-Kurile arc, Geophys. J. R. Astron. Soc., 50, 621-642, 1977.
  40. Fukao, Y., T. Nagahashi, and S. Mori, Shear velocity in the mantle transition zone, in High Pressure Research in Geophysics, by S. Akimoto and M. H. Manghnani, pp. 285-300, Center for Aca- demic Publications, Tokyo, 1982.
  41. Gasparik, T., Phase relations in the transition zone, J. Geophys. Res., 95, 15,751-17,769, 1990.
  42. Giardini, D., and J. H. Woodhouse, Deep seismicity and modes of deformation in Tonga subduction zone, Nature, 307, 505-509, 1984.
  43. Gilbert, F., and A.M. Dziewonski, An application of normal mode theory to the retrieval of structural parameters and source mech- anisms from seismic spectra, Philos. Trans. R. Soc. London, Ser. A, 278, 187-269, 1975.
  44. Given, J. W., and D. V. Helmberger, Upper mantle structure of northwestern Eurasia, J. Geophys. Res., 85, 7183-7194, 1980.
  45. Grad, M., Seismic model of the Earth's crust and upper mantle for the east European platform, Phys. Earth Planet. Inter., 51, 182-184, 1988.
  46. Graham, E., and G. Barsch, Elastic constants of single-crystal forsterite as a function of temperature and pressure, J. Geophys. Res., 74, 5949-5960, 1969.
  47. Graham, E., J. Schwab, S. Sopkin, and H. Takei, The pressure and temperature dependence of the elastic properties of single-crystal fayalite Fe2SiO4, Phys. Chem. Miner., 16, 186-198, 1988.
  48. Grand, S. P., and D. V. Helmberger, Upper mantle shear structure of North America, Geophys. J. R. Astron. Soc., 76, 399-438, 1984a.
  49. Grand, S. T., and D. V. Helmberger, Upper mantle shear structure beneath the northwest Atlantic Ocean, J. Geophys. Res., 89, 11,465-11,475, 1984b.
  50. Graves, R. W., and D. V. Helmberger, Upper mantle cross section from Tonga to Newfoundland, J. Geophys. Res., 93, 4701-4711, 1988.
  51. Guggenheim, E. A., Mixtures, 270 pp., Clarendon, Oxford, 1952.
  52. Gurnis, M., and G. F. Davies, Mixing in numerical models of mantle convection incorporating plate kinematics, J. Geophys. Res., 91, 6375-6395, 1986.
  53. Gwanmesia, G., S. Rigden, I. Jackson, and R. Liebermann, Pres- sure dependence of elastic wave velocity for/3-Mg2SiO4 and the composition of the Earth's mantle, Science, 250, 794-797, 1990.
  54. Haddon, R. A. W., and K. E. Bullen, An Earth model incorporating free oscillation data, Phys. Earth Planet. Inter., 2, 35-49, 1969.
  55. Hager, B. H., and M. A. Richards, Long-wavelength variations in Earth's geoid: Physical models and dynamical implications, Phi- los. Trans. R. Soc. London, Ser. A, 328, 309-327, 1989.
  56. Hales, A. L., K. J. Muirhead, and J. M. W. Rynn, A compressional velocity distribution for the upper mantle, Tectonophysics, 63, 309-348, 1980.
  57. Hardy, R. J., Temperature and pressure dependence of intrinsic anharmonic and quantum corrections to the equation of state, J. Geophys. Res., 85, 7011-7015, 1980.
  58. Hart, R. S., Shear velocity in the lower mantle from explosion data, J. Geophys. Res., 80, 4889-4894, 1975.
  59. Hart, R. S., D. L. Anderson, and H. Kanamori, Shear velocity and density of an attenuating Earth, Earth Planet. Sci. Let., 32, 25-34, 1976.
  60. Haselton, H. T., and R. C. Newton, Thermodynamics of pyrope- grossular garnets and their stabilities at high temperatures and high pressures, J. Geophys. Res., 85, 6973-6982, 1980.
  61. Hashin, Z., and S. Shtrikman, A variational approach to the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11, 127-140, 1963.
  62. Hazen, R. M., J. Zhang, and J. Ko, Effects of Fe/Mg on the compressibility of synthetic wadsleyite: /3-(Mgl_xFex)SiO4(x < 0.25), Phys. Chem. Miner., 17, 416-419, 1990.
  63. Herrin, E., 1968 seismological tables for P phases, Bull. Seismol. Soc. Am., 58, 1193-1242, 1968.
  64. Irifune, T., An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle, Phys. Earth Planet. Inter., 45, 324- 336, 1987.
  65. Irifune, T., and A. E. Ringwood, Phase transformations in a harzburgite composition to 26 GPa: Implications for dynamical behaviour of the subducting slab, Earth Planet. Sci. Lett., 86, 365-376, 1987a.
  66. Irifune, T., and A. E. Ringwood, Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysi- cal implications, in High-Pressure Research in Mineral Physics, Geophys. Monogr. Ser., vol. 39, edited by M. H. Manghnani and Y. Syono, pp. 231-242, Washington, D.C., 1987b.
  67. Irifune, T., T. Sekine, A. E. Ringwood, and W. O. Hibberson, The eclogite-garnetite transformation at high pressure and some geo- physical implications, Earth Planet. Sci. Lett., 77, 245-256, 1986.
  68. Irifune, T., J. Susaki, T. Yagi, and H. Sawamoto, Phase transfor- mations in diopside CaMgSi20 6 at pressures up to 25 GPa, Geophys, Res. Lett., 16, 187-190, 1989.
  69. Isaak, D. G., O. Anderson, and T. Goto, Elasticity of single-crystal forsterite measured to 1700øK, J. Geophys. Res., 94, 5895-5906, 1989.
  70. Isacks, B. L., and P. Molnar, Distribution of stresses in the descending lithosphere from a global survey of focal mechanism solutions of mantle earthquakes, Rev. Geophys., 9, 103-174, 1971.
  71. Ito, E., and E. Takahashi, Ultrahigh-pressure phase transformations and the constitution of the deep mantle, in High-Pressure Re- search in Mineral Physics, Geophys. Monogr. Ser., vol. 39, edited by M. H. Manghnani and Y. Syono, pp. 221-230, AGU, Washington, D.C., 1987a.
  72. Ito, E., and E. Takahashi, Melting of peridotite at uppermost lower-mantle conditions, Nature, 328, 514-517, 1987b.
  73. Ito, E., and E. Takahashi, Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geo- phys. Res., 94, 10,637-10,646, 1989.
  74. Jackson, I., Some geophysical constraints on the chemical compo- sition of the earth's lower mantle, Earth Planet. Sci. Lett., 62, 91-103, 1983.
  75. Jackson, I., Elasticity and polymorphism of wfistite Fel_xO, J. Geophys. Res., 95, 21,671-21,685, 1990.
  76. Jackson, I., and H. Niesler, The elasticity of periclase to 3 GPa and some geophysical implications, in High Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp. 93-113, Center for Academic Publications, Tokyo, 1982.
  77. Jarrard, R. D., Relations among subduction parameters, Rev. Geo- phys., 24, 217-284, 1986.
  78. Jeanloz, R., Shock wave equation of state and finite strain theory, J. Geophys. Res., 94, 5873-5886, 1989.
  79. Jeanloz, R., Majorite: Vibrational and compressional properties of a high-pressure phase, J. Geophys. Res., 86, 6171-6179, 1981.
  80. Jeanloz, R., and E. Knittle, Density and composition of the lower mantle, Philos. Trans. R. Soc. London, Ser. A, 328, 377-389, 1989.
  81. Jeanloz, R., and S. Morris, Temperature distribution in the crust and mantle, Annu. Rev. Earth Planet. Sci., 14, 377-415, 1986.
  82. Jeanloz, R., and F. M. Richter, Convection, composition, and the thermal state of the lower mantle, J. Geophys. Res., 84, 5497- 5504, 1979.
  83. Jeanloz, R., and A. B. Thompson, Phase transitions and mantle discontinuities, Rev. Geophys., 21, 51-74, 1983.
  84. Jordan, T. H., and D. L. Anderson, Earth structure from free oscillations and travel times, Geophys. J. R. Astron. Soc., 36, 411-459, 1974.
  85. Kandelin, J., and D. J. Weidner, Elastic properties of hedenbergite, J. Geophys. Res., 94, 1063-1072, 1988.
  86. Kanzaki, M., Ultrahigh-pressure phase relations in the system Mg4Si40•2-Mg3A12Si30•2, Phys. Earth Planet. Inter., 49, 168- 175, 1987.
  87. Kato, T., A. E. Ringwood, and T. Irifune, Experimental determi- nation of element partitioning between silicate perovskites, gar- nets and liquids: Constraints on early differentiation of the mantle, Earth Planet. Sci. Lett., 89, 123-145, 1988.
  88. Katsura, T., and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15,663- 15,670, 1989.
  89. Kennett, B. L. N., and E. R. Engdahl, Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105,429-465, 1991.
  90. Kim, Y., L. C. Ming, and M. H. Manghnani, A study of phase transformation in hedenbergite to 40 GPa at 1200øC, Phys. Chem. Miner., 16, 757-762, 1989.
  91. Kind, R., and G. Muller, Computations of SV waves in realistic Earth models, J. Geophys., 4, 149-172, 1975.
  92. King, D. W., and G. Calcagnile, P-wave velocities in the upper mantle beneath Fennoscandia and western Russia, Geophys. J. R. Astron. Soc., 46, 407-432, 1976.
  93. Knittle, E., and R. Jeanloz, Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 gigapascals, Science, 235, 666- 670, 1987.
  94. Knittle, E., R. Jeanloz, and G. L. Smith, Thermal expansion of silicate perovskite and stratification of the Earth's mantle, Na- ture, 319, 214-216, 1986.
  95. Knopoff, L., and J. N. Shapiro, Comments on the interrelationships between Grtineisen's parameter and shock and isothermal equa- tions of state, J. Geophys. Res., 74, 1439-1450, 1969.
  96. Korn, M., P-wave coda analysis of short-period array data and the scattering and absorptive properties of the lithosphere, Geophys. J. R. Astron. Soc., 93,437-449, 1988.
  97. Krupka, K. M., R. A. Robie, and B. S. Hemingway, High temper- ature heat capacities of corundum, periclase, anorthite, CaA12Si208 glass, muscovite, pyrophyillite, KA1Si30 8 glass, grossular, and NaA1Si308 glass, Am. Mineral., 64, 86-101, 1979.
  98. Krupka, K. M., B. S. Hemingway, R. A. Robie, and D. M. Kerrick, High temperature heat capacities and derived thermodynamic properties of anthophyillite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite, Am. Mineral., 70, 261-271, 1985.
  99. Lefevre, L. V., and D. V. Helmberger, Upper mantle P velocity structure of the Canadian shield, J. Geophys. Res., 94, 17,749- 17,765, 1989.
  100. Leger, J. M., A.M. Redon, and C. Chateau, Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa, Phys. Chem. Miner., 17, 161-167, 1990.
  101. Lerner-Lam, A. L., and T. H. Jordan, How thick are the conti- nents?, J. Geophys. Res., 92, 14,007-14,026, 1987.
  102. Leven, J. H., The application of synthetic seismograms to the interpretation of the upper mantle P-wave velocity structure in northern Australia, Phys. Earth Planet. Inter., 38, 9-27, 1985.
  103. Levien, L. R., and C. T. Prewitt, High pressure structural study of diopside, Am. Mineral., 66, 315-323, 1981.
  104. Levien, L., D. J. Weidner, and C. T. Prewitt, Elasticity of diopside, Phys. Chem. Miner., 4, 105-113, 1979.
  105. Liebermann, R. C., Elasticity of olivine (a), beta (/3), and spinel (3/) polymorphs of germanates and silicates, Geophys. J. R. Astron. Soc., 42,899-929, 1975.
  106. Lyon-Caen, H., Comparison of the upper mantle shear wave velocity structure of the Indian Shield and the Tibetan Plateau and tectonic implications, Geophys. J. R. Astron. Soc., 86, 727-749, 1986.
  107. Machetel, P., and D. A. Yuen, Penetrative convective flows induced by internal heating and mantle compressibility, J. Geophys. Res., 94, 10,609-10,626, 1989.
  108. Mao, H. K., L. C. Chen, R. J. Hemley, A. P. Jephcoat, Y. Wu, and W. A. Basset, Stability and equation of state of CaSiO3- perovskite to 134 GPa, J. Geophys. Res., 94, 17,889-17,894, 1989.
  109. Mao, H. K., R. J. Hemley, Y. Fei, J. F. Shu, L. C. Chen, A. P. Jephcoat, Y. Wu, and W. A. Bassett, Effect of pressure, temper- ature and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa, J. Geophys. Res., 96, 8069- 8080, 1991.
  110. McMechan, G. A., An amplitude constrained P-wave velocity profile for the upper mantle beneath the eastern United States, Bull. Seismol. Soc. Am., 69, 1733-1744, 1979.
  111. McMechan, G. A., Mantle P-wave velocity structure beneath Antarctica, Bull. Seismol. Soc. Am., 71, 1061-1074, 1981.
  112. McQueen, R. G., S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, The equation of state of solids from shock wave studies, in High Velocity Impact Phenomena, edited by R. Kinslow, pp. 294-419, Academic, San Diego, Calif., 1970.
  113. Mizutani, H., and K. Abe, An Earth model consistent with free oscillation and surface wave data, Phys. Earth Planet. Inter., 5, 345-356, 1971.
  114. Montagner, J., and D. L. Anderson, Constrained reference mantle model, Phys. Earth Planet. Inter., 58, 205-227, 1989.
  115. Montagner, J.P., and T. Tanimoto, Global upper mantle tomogra- phy of seismic velocities and anisotropies, J. Geophys. Res., 96, 20,337-20,351, 1991.
  116. Nakada, M., and M. Hashizume, Upper mantle structure beneath the Canadian shield derived from higher modes of surface waves, J. Phys. Earth, 31,387-405, 1983.
  117. Ohashi, Y., and L. Finger, The effect of Ca substitution on the structure of clinoenstatite, Year Book Carnegie Inst. Washington, 75,743-746, 1976.
  118. Ohashi, Y., C. W. Burnham, and L. Finger, The effect of Ca-Fe substitution on the clinopyroxene crystal structure, Am. Mineral., 60, 423-434, 1975.
  119. Ohtani, E., Chemical stratification of the mantle formed by melting in the early stage of the terrestrial evolution, Tectonophysics, 154, 201-210, 1988.
  120. Olinger, B., Compression studies of forsterite (Mg2SiO4) and ensta- tite (MgSiO3), in High-Pressure Research: Applications in Geo- physics, edited by M. H. Manghnani and S. Akimoto, pp. 255- 266, Academic, San Diego, Calif., 1977.
  121. O'Neill, B., and R. Jeanloz, Experimental petrology of the lower mantle: A natural peridotite taken to 54 GPa, Geophys. Res. Lett., 17, 1477-1480, 1990.
  122. O'Neill, B., J. D. Bass, J. R. Smyth, and M. T. Vaughan, Elasticity of grossular-pyrope-almandine garnet, J. Geophys. Res., 94, 17,819-17,824, 1989.
  123. Paulssen, H., Lateral heterogeneity of Europe's upper mantle as inferred from modelling of broad-band body waves, Geophys. J. R. Astron. $oc., 91, 171-199, 1987.
  124. Plymate, T. G., and J. H. Stout, A five-parameter temperature corrected Murnaghan equation for P-V-T surfaces, J. Geophys. Res., 94, 9477-9483, 1989.
  125. Randall, M. J., A revised travel-time table for S, Geophys. J. R. Astron. $oc., 22,229-234, 1971.
  126. Richet, P., H. Mao, and P.M. Bell, Bulk moduli of magnesiowfis- tites from static compression measurements, J. Geophys. Res., 94, 3037-3045, 1989.
  127. Rigden, S. M., G. D. Gwanmesia, J. D. FitzGerald, I. Jackson, and R. C. Liebermann, Spinel elasticity and seismic structure of the transition zone of the mantle, Nature, 354, 143-145, 1991.
  128. Ringwood, A. E., Composition and Petrology of the Earth's mantle, 618 pp., McGraw-Hill, New York, 1975.
  129. Robie, R. A., B. S. Hemingway, and J. R. Fisher, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and higher temperatures, U.S. Geol. $urv. Bull., 1452, 456 pp., 1976.
  130. Salerno, C. M., and J.P. Watt, Walpole bounds on the effective elastic moduli of isotropic multicomponent composites, J. Appl. Phys., 60, 1618-1624, 1986.
  131. Sautter, V., S. E. Haggerty, and S. Field, Ultradeep (>300 kilome- ters) ultramafic xenoliths: petrological evidence from the transi- tion zone, Science, 252,827-830, 1991.
  132. Sawamoto, H., D. Weidner, S. Sasaki, and M. Kumazawa, Single- crystal elastic properties of the modified spinel (beta) phase of Mg2SiO4, Science, 224, 749-751, 1984.
  133. Sawamoto, H., M. Kozaki, A. Jujimura, and T. Akamatsu, Precise measurement of compressibility of 7-Mg2SiO4 using synchrotron radiation, paper presented at 27th High Pressure Conference, Sapporo, Japan, 1986.
  134. Saxena, S. K., Thermodynamics of Rock-Forming Minerals, 188 pp., Springer-Verlag, New York, 1973.
  135. Sengupta, M. K., and B. R. Julian, Radial variation of compres- sional and shear velocities in the Earth's lower mantle, Geophys. J. R. Astron. Soc., 54, 185-219, 1978.
  136. Shapiro, J. N., and L. Knopoff, Reduction of shock wave equations of state to isothermal equations of state, J. Geophys. Res., 74, 1435-1438, 1969.
  137. Shearer, P.M., Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity, Nature, 344, 121-126, 1990.
  138. Silver, P. G., and W. W. Chan, Observations of body wave multipathing from broadband seismograms: evidence for lower mantle slab penetration beneath the Sea of Okhotsk, J. Geophys. Res., 91, 13,787-13,802, 1986.
  139. Silver, P. G., Carlson, R. W., and P. Olson, Deep slabs, geochem- ical heterogeneity, and the large-scale structure of mantle convec- tion: Investigation of an enduring paradox, Annu. Rev. Earth Planet. $ci., 16, 477-541, 1988.
  140. Skinner, B. J., Physical properties of end-members of the garnet group, Am. Mineral., 41,428-436, 1956.
  141. Stixrude, L., and M. T. Bukowinski, Fundamental thermodynamic relations and silicate melting with implications for the constitution of D", J. Geophys. Res., 95, 19,311-19,326, 1990.
  142. Stixrude, L., and J. J. Ita, Statistical approach to the determination of lower mantle composition, Eos Trans. AGU, 72,464, 1991.
  143. Sueno, S., M. Cameron, and C. T. Prewitt, Orthoferrosilite: High temperature crystal chemistry, Am. Mineral., 61, 38-53, 1976.
  144. Suzuki, I., Thermal expansion of olivine and periclase and their anharmonic properties, J. Phys. Earth, 25, 145-159, 1975a.
  145. Suzuki, I., Cell parameters and linear thermal expansion coetficients of orthopyroxenes, J. $eismol. $oc. Jpn., 28, 1-9, 1975b.
  146. Suzuki, I., Thermal expansion of 7-Mg2SiO4, J. Phys. Earth, 27, 53-61, 1979.
  147. Suzuki, I., and O. L. Anderson, Elasticity and thermal expansion of a natural garnet up to 1000 K, J. Phys. Earth, 31, 125-138, 1983.
  148. Suzuki, I., E. Ohtani, and M. Kumazawa, Thermal expansion of modified spinel,/3-Mg2SiO4, J. Phys. Earth, 28, 273-280, 1980.
  149. Suzuki, I., K. Seya, H. Takei, and Y. Sumino, Thermal expansion of fayalite, Phys. Chem. Miner., 7, 60-63, 1981.
  150. Takahashi, E., and E. Ito, Mineralogy of mantle peridotite along a model geotherm up to 700 km depth, in High-Pressure Research in Mineral Physics, Geophys. Monogr. $er., vol. 39, edited by M. H. Manghnani and Y. Syono, pp. 427-438, AGU, Washington, D.C., 1987.
  151. Tamai, H., and T. Yagi, High-pressure and high-temperature phase relations in CaSiO3 and CaMgSi206 and elasticity of perovskite- type CaSiO3, Phys. Earth Planet. Inter., 54, 370-377, 1989.
  152. Tonks, W. B., and H. J. Melosh, The physics of crystal settling and suspension in a turbulent magma ocean, in Origin of the Earth, edited by H. E. Newsom and J. H. Jones, pp. 151-174, Oxford University Press, New York, 1990.
  153. Touloukian, Y. S., R. S. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion, Nonmetallic Solids, Plenum, New York, 1977.
  154. Uhrhammer, R., Shear-wave velocity structure for a spherically averaged earth, Geophys. J. R. Astron. $oc., 58, 749-767, 1979.
  155. Vassiliou, M. S., B. H. Hager, and A. Raefsky, The distribution of earthquakes with depth and stress in subducting slabs, J. Geo- dyn., 1, 11-28, 1984.
  156. Verhoogen, J., Phase changes and convection in the Earth's mantle, Philos. Trans. R. $oc. London, $er. A, 258, 276-283, 1965.
  157. Vinnik, L. P., and V. Z. Ryaboy, Deep structure of the east European platform according to seismic data, Phys. Earth Planet. Inter., 25, 27-37, 1981.
  158. Walck, M. C., The P-wave upper mantle structure beneath an active spreading center: The Gulf of California, Geophys. J. R. Astron. $oc., 76, 697-723, 1984.
  159. Walck, M. C., The upper mantle beneath the north-east Pacific rim: A comparison with the Gulf of California, Geophys. J. R. Astron. $oc., 81,243-276, 1985.
  160. Walker, D., and C. Agee, Partitioning "equilibrium", temperature gradients, and constraints on Earth differentiation, Earth Planet. $ci. Lett., 96, 49-60, 1989.
  161. Wang, C., A simple Earth model, J. Geophys. Res., 77, 4318-4329, 1972.
  162. Watanabe, H., Thermochemical properties of synthetic high- pressure compounds relevant to the Earth's mantle, in High Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp. 93-113, Center for Academic Publications, Tokyo, 1982.
  163. Watt, J.P., and T. J. Ahrens, Shock wave equation of state of enstatite, J. Geophys. Res., 91, 7495-7503, 1986.
  164. Watt, J.P., G. F. Davies, and R. J. O'Connell, The elastic properties of composite materials, Rev. Geophys., 14, 541-563, 1976.
  165. Weaver, J. S., T. Takahashi, and J. Bass, Isothermal compression of grossular garnets to 250 kbars and the effect of calcium on the bulk modulus, J. Geophys. Res., 81, 2475-2482, 1976.
  166. Weidner, D. J., A mineral physics test of a pyrolite mantle, Geophys. Res. Lett., 12, 417-420, 1985.
  167. Weidner, D. J., and E. Ito, Mineral physics constraints on a uniform mantle composition, in High-Pressure Research in Mineral Phys- ics, Geophys. Monogr. Ser., vol. 39, edited by M. H. Manghnani, and Y. Syono, pp. 439-446, AGU, Washington, D.C., 1987.
  168. Weidner, D. J., H. Wang, and J. Ito, Elasticity of orthoenstatite, Phys. Earth Planet. Inter., 17, P7-P13, 1978.
  169. Weidner, D. J., H. Sawamoto, and S. Sasaki, Single-crystal elastic properties of the spinel phase of Mg2SiO n, J. Geophys. Res., 89, 7852-7859, 1984.
  170. Weng, K., H. K. Mao, and P.M. Bell, Lattice parameters of the perovskite phase in the system MgSiO3-CaSiO3-A120 3, Year Book Carnegie Inst. Washington, 1981, 273-277, 1982.
  171. Williams, Q., E. Knittle, R. Reichlin, S. Martin, and R. Jeanloz, Structural and electronic properties of Fe2SiOn-fayalite at ultra- high pressures: Amorphization and gap closure, J. Geophys. Res., 95, 21,549-21,564, 1990.
  172. Wood, B. J., Postspinel transformations and the width of the 670-km discontinuity: A comment on "Postspinel transformations in the system Mg2SiOn-Fe2SiO4 and some geophysical implications", by E. Ito and E. Takahashi, J. Geophys. Res., 95, 12,681-12,685, 1990.
  173. Wood, B. J., and O. J. Kleppa, Thermochemistry of forsterite- fayalite olivine solutions, Geochim. Cosmochim. Acta, 45, 529- 534, 1981.
  174. Wright, C., and J. R. Cleary, P wave travel-time gradient measure- ments for the Warramunga seismic array and lower mantle structure, Phys. Earth Planet. Inter., 5,213-230, 1972.
  175. Yeganeh-Haeri, A., D. J. Weidner, and E. Ito, Single crystal elastic moduli of magnesium metasilicate perovskite, in Perovskite: A Structure of Great Interest to Geophysics and Materials Science, Geophys. Monogr. Ser., vol. 45, edited by A. Navrotsky and D. J. Weidner, pp. 13-26, AGU, Washington, D.C., 1989.
  176. Yeganeh-Haeri, A., D. J. Weidner, and E. Ito, Elastic properties of the pyrope-majorite solid solution series, Geophys. Res. Lett., 17, 2453-2456, 1990.
  177. Zhou, H., and R. W. Clayton, P and S wave travel time inversions for subducting slabs under island arcs of the northwest Pacific, J. Geophys. Res., 95, 6829-6851, 1990.
  178. Zindler, A., and S. Hart, Chemical geodynamics, Annu. Rev. Earth Planet. Sci., 14, 493-571, 1986.
  179. J. Ita, Department of Geology and Geophysics, University of California, Berkeley, CA 94720. L. Strixrude, Center for High Pressure Research, Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broadbranch Road, N.W., Washington, DC 20015-1305. (Received August 12, 1991; revised December 23, 1991; accepted December 27, 1991.)