Parameters of Pseudo-Random Quantum Circuits
2008
Abstract
Pseudorandom circuits generate quantum states and unitary operators which are approximately distributed according to the unitarily invariant Haar measure. We explore how several design parameters affect the efficiency of pseudo-random circuits, with the goal of identifying relevant trade-offs and optimizing convergence. The parameters we explore include the choice of single- and two-qubit gates, the topology of the underlying physical qubit architecture, the probabilistic application of two-qubit gates, as well as circuit size, initialization, and the effect of control constraints. Building on the equivalence between pseudo-random circuits and approximate t-designs, a Markov matrix approach is employed to analyze asymptotic convergence properties of pseudo-random second-order moments to a 2-design. Quantitative results on the convergence rate as a function of the circuit size are presented for qubit topologies with a sufficient degree of symmetry. Our results may be theoretically an...
References (57)
- I. Bengtsson and K. Zyczkowski, Geometry of Quan- tum States: An Introduction to Quantum Entanglement (Cambridge University Press, New York, 2006).
- S. Lloyd, Phys. Rev. A 55, 1613 (1997).
- A. Harrow, P. Hayden, and D. Leung, Phys. Rev. Lett. 92, 187901 (2004).
- P. Hayden, D. Leung, P. W. Shor, and A. Winter, Com- mun. Math. Phys. 250, 371 (2004).
- A. Ambainis and A. Smith, in: Proc. RANDOM 2004, (Cambridge, MA, 2004), quant-ph/0404075.
- D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
- S. K. Foong and S. Kanno, Phys. Rev. Lett. 72, 1148 (1994).
- A. Scott and C. M. Caves, J. Phys. A 36, 9553 (2003).
- O. Giraud, J. Phys. A 40, 2793 (2007).
- L. Viola and W. G. Brown, J. Phys. A 40, 8109 (2007).
- V. Cappellini, H-.J. Sommers, and K. Zyczkowski, Phys. Rev. A 74, 062322 (2006).
- P. Facchi, G. Florio, and S. Pascazio, Phys. Rev. A 74, 042331 (2006).
- M. L. Mehta, Random Matrices, (Academic Press, New York, 1991).
- C. H. Bennett, P. Hayden, D. Leung, P. W. Shor, and A. Winter, IEEE Trans. Inform. Theory 51, 56 (2005).
- J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd, and D. G. Cory, Science 302, 2098 (2003).
- B. Levi, C. C. Lopez, J. Emerson, and D. G. Cory, Phys. Rev. A 75, 022314 (2007);
- J. Emerson et al., Science 317, 1893 (2007).
- A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008).
- J. Emerson, E. Livine, and S. Lloyd, Phys. Rev. A 72, 060302(R) (2005).
- Y. S. Weinstein and C. S. Hellberg, Phys. Rev. Lett. 95, 030501 (2005).
- L. Arnaud and D. Braun, quant-ph/0807.0775.
- M. Znidaric, Phys. Rev. A 76, 012318 (2007).
- R. Oliveira, O. C. Dahlsten, and M. B. Plenio, Phys. Rev. Lett. 98, 130502 (2007);
- O. C. O. Dahlsten, R. Oliveira, and M. B. Plenio, J. Phys. A 40, 8081 (2007).
- W. G. Brown, Y. S. Weinstein, and L. Viola, Phys. Rev. A 77, 040303(R) (2008).
- A. D. K. Plato, O. C. Dahlsten, and M. B. Plenio, quant-ph/0806.3058.
- C. Dankert, R. Cleve, J. Emerson, E. Livine, quant-ph/0606161; A. Ambainis and J. Emerson, quant-ph/0701126.
- A. Harrow and R. Low, quant-ph/0802.1919.
- H. Barnum, E. Knill, G. Ortiz, and L. Viola, Phys. Rev. A 68, 032308 (2003);
- H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, Phys. Rev. Lett. 92, 107902 (2004);
- R. Somma, G. Ortiz, H. Barnum, E. Knill, and L. Viola, Phys. Rev. A 70, 042311 (2004).
- H. Barnum, G. Ortiz, R. Somma, and L. Viola, Int. J. Theor. Phys. 44, 2127 (2005).
- D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002).
- G. K. Brennen, Quant. Inf. Comp. 3, 619 (2003).
- K. Zyczkowski and M. Kus, J. Phys. A 27, 4235 (1994);
- M. Pozniak, K. Zyczkowski, and M. Kus, ibid. 31, 1059 (1998);
- F. Haake and K. Zyczkowski, Phys. Rev. A 42, R1013 (1990).
- If no restriction is placed on allowable pairs, CZ and XY gates yield an equivalent convergence rate when used in conjuction with SU(2) single-qubit gates.
- Y. Most, Y. Shimoni, and O. Biham, Phys. Rev. A 76, 022328 (2007).
- The data is noisy due to the two-fold degeneracy of λ2, the largest non-trivial eigenvalue of M ′ . When smoothed, the decay is exponential as expected.
- F. Haake, Quantum Signatures of Chaos (Springer, New York, 2001).
- Y. S. Weinstein and C. S. Hellberg, Phys. Rev. A 69, 062301 (2004);
- Y. S. Weinstein and C. S. Hellberg, ibid. 71, 014303 (2005).
- Y. S. Weinstein and C. S. Hellberg, Phys. Rev. A 72, 022331 (2005).
- M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).
- H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).
- R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
- D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005).
- R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys. Rev. A 68, 022312 (2003).
- M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311 (2004).
- M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004);
- D. E. Browne and T. Rudolph, ibid. 95, 010501 (2005);
- L. M. Duan, R. Raussendorf, ibid. 95, 080503 (2005);
- Q. Chen, J. Cheng, K.L. Wang, J. Du, Phy. Rev. A 73, 012303 (2006);
- G. Gilbert, M. Hamrick, and Y. S. Weinstein, ibid. 73, 064303 (2006);
- D. Gross, K. Kieling, and J. Eisert, ibid. 74, 042343 (2006).
- D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, IEEE Trans. Inf. Theory 48, 580 (2002).