Academia.eduAcademia.edu

Outline

Quantum circuit for three-qubit random states

2009, Physical Review A

https://doi.org/10.1103/PHYSREVA.80.042309

Abstract

We explicitly construct a quantum circuit which exactly generates random three-qubit states. The optimal circuit consists of three CNOT gates and fifteen single qubit elementary rotations, parametrized by fourteen independent angles. The explicit distribution of these angles is derived, showing that the joint distribution is a product of independent distributions of individual angles apart from four angles.

References (31)

  1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge (2000).
  2. F. Haake, Quantum Signatures of Chaos, 2nd. ed. Springer Verlag, Berlin, 2001.
  3. A. Harrow, P. Hayden and D. Leung, Phys. Rev. Lett. 92, 187901 (2004);
  4. A. Abeyesinghe et al., IEEE Trans. In- form. Theory 52, 3635 (2006).
  5. P. Hayden et al., Comm. Math. Phys. 250, 371 (2004);
  6. C. H. Bennett et al., IEEE Trans. Inform. Theory 51, 56 (2005);
  7. A. Ambainis and A. Smith, e-print quant-ph/0404075.
  8. J. Emerson, R. Alicki and K. Zyczkowski, J. Opt. B: Quantum Semiclass. Opt. 7, S347-S352 (2005);
  9. B. Levi, C. C. Lopez, J. Emerson and D. G. Cory, Phys. Rev. A 75, 022314 (2007).
  10. G. Toth and J. J. Garcia-Ripoll, Phys. Rev. A 75, 042311 (2007).
  11. J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd and D. G. Cory, Science 302, 2098 (2003).
  12. R. Oliveira, O. C. O. Dahlsten and M. B. Plenio, Phys. Rev. Lett. 98, 130502 (2007);
  13. O. C. O. Dahlsten, R. Oliveira and M. B. Plenio, J. Phys. A 40, 8081 (2007).
  14. A. Harrow and R. Low, e-print arXiv:0802.1919.
  15. M. Žnidarič, Phys. Rev. A 78, 032324 (2008).
  16. Y. S. Weinstein and C. S. Hellberg, Phys. Rev. Lett. 95, 030501 (2005);
  17. M. Žnidarič, Phys. Rev. A 76, 012318 (2007);
  18. Y. Most, Y. Shimoni and O. Biham, Phys. Rev. A 76, 022328 (2007);
  19. D. Rossini and G. Be- nenti, Phys. Rev. Lett. 100, 060501 (2008);
  20. Y. S. We- instein, W. G. Brown and L. Viola, Phys. Rev. A 78, 052332 (2008);
  21. L. Arnaud and D. Braun, Phys. Rev. A 78, 062329 (2008).
  22. J. Emerson, E. Livine and S. Lloyd, Phys. Rev. A 72, 060302(R) (2005).
  23. C. Dankert, R. Cleve, J. Emerson and E. Livine, e-print quant-ph/0606161.
  24. A. Ambainis and J. Emerson, in Proceedings of the XXII Annual Conference on Computational Complexity (IEEE Computer Society, Los Alamitos, CA, 2007), 129-140.
  25. M. Žnidarič, O. Giraud and B. Georgeot, Phys. Rev. A 77, 032320 (2008).
  26. I. Bengtsson and K. Zyczkowski, Geometry of Quantum States, Cambridge University Press, Cambridge, 2006.
  27. A. Hurwitz, Nachr. Ges. Wiss. Goettinger Math. Phys. Kl. 71, (1897).
  28. V. I. Arnold, Mathematical methods of classical mechan- ics, Graduate texts in mathematics, New York: Springer, 1978.
  29. I. Bengtsson, J. Braennlund and K. Zyczkowski, Int. J. Mod. Phys. A 17 4675 (2002).
  30. K. Zyczkowski and H.-J. Sommers, J. Phys. A: Math. Gen. 34, 7111 (2001).
  31. A. Acín et.al., Phys. Rev. Lett. 85, 1560 (2000).