Academia.eduAcademia.edu

Outline

Entropy in the Present and Early Universe

2008, arXiv: High Energy Physics - Theory

Abstract

This is a short analysis of the changes in the concept of entropy as applied to physics of the present-day and Early Universe. Of special interest is a leading role of such a notion as deformation of a physical theory. The relation to a symmetry of the corresponding theory is noted. As this work is not a survey, the relevant author's works are mainly considered. This paper is to be published in special issue "Symmetry and Entropy" of journal SYMMETRY: Culture and Science

References (46)

  1. Faddeev, L. D., (1989) Mathematical View on Evolution of Physics, Priroda, no. 5, 11-16
  2. Gerstenhaber, M., (1964) On the deformation of rings and al- gebras, Ann. of Math. 79, no.1, 59-103.
  3. Weyl, H., (1931) The theory of groups and quantum mechanics, Dover Publications 2rd ed, Russian transl. Moscow "Nauka", 1986, 495 pp.
  4. Heisenberg, W., (1927) Uber den anschaulichen Inhalt der quanten- theoretischen Kinematik und Mechanik, Zeitsch .fur Phys, 43, no. 2, 172-177
  5. Kaku, M., (1988) Introduction to Superstring, Springer-Verlag, Russian transl. Moscow "Mir", 1999, 624 pp.
  6. Veneziano, G., (1986) A stringly nature needs just two con- stant Europhysics Letters, 2, no. 1, 199-204
  7. Witten, E., (1996) Reflections on the Fate of Spacetime, Physics Today, 49, 24-31
  8. Adler, R.J., Santiago, D. I., (1999) On Gravity and the Uncer- tainty Principle, Modern Physics Letters. A, 14, no. 18, 1371-1378
  9. Dirac, P. A. M., (1958) The principles of quantum mechanics, Oxford at the Calderon Press 4rd ed, Russian transl. Moscow "Nauka", 1979, 480 pp.
  10. Maggiore, M., (1993) The algebraic structure of the generalized uncertainty principle, Physics Letters, B319, no. 1, 83-86
  11. Kempf, A., Mangano, G., Mann, R.B., (1995) Hilbert Space Representation of the Minimal Length Uncertainty Relation, Physical Review. D 52 , no.5, 1108-1123
  12. Blum, K., (1981) Density matrix theory and applications, Plenum Press, Russian transl. Moscow "Mir", 1983, 248 pp.
  13. Shalyt-Margolin, A.E., Suarez, J.G., (2003) Quantum Mechan- ics at Planck's scale and Density Matrix, International Journal of Modern Physics., D.12, no. 7,1265 -1278
  14. Shalyt-Margolin, A.E., (2005, 1) The Density Matrix Deforma- tion in Physics of the Early Universe and Some of its Implications, "Quantum Cosmology Research Trends .Chapter2." Horizons in World Physics, Vol. 246,49-91, Nova Science Publishers, Inc., Hauppauge, NY.
  15. Messiah, A., (1965). Quantum Mechanics.v.1 -Amsterdam: North-Holland. Russian transl. Moscow "Nauka", 1978, 480 pp.
  16. Shalyt-Margolin, A.E., Tregubovich, A.Ya., (2004) Deformed Density Matrix and Generalized Uncertainty Relation in Thermody- namics, Modern Physics Letters A.19. no 1, 71-81
  17. Bohr, N. (1932) Faraday Lectures, Chemical Society, London, pp. 349-384, 376-377.
  18. Heisenberg, W., (1969) Der Teil und Das Ganze, ch 9 R.Piper, Munchen
  19. Lavenda, B. H, (1991) Statistical Physics: a Probabilistic Ap- proach, Wiley-Interscience and Publication, N.Y. 432pp.
  20. Uffink, J., van Lith-van Dis, J., (1999) Thermodynamic Uncer- tainty Relation, Found.of Phys. 29, no3, 655-679.
  21. Carroll, R., (2006) Fluctuations, Information, Gravity and the Quantum Potential. Fundamental Theory in Physics 148. 454 pp.
  22. Adami, C., The Physics of Information, Review Article, quant-ph/0405005, 28pp.
  23. Shannon, C.,(1948) A mathematical theory of communication. Bell System Technical Journal 27, 379-423 ibid, 623-656.
  24. Feynman R.P., (1972) Statistical Mechanics. A Set of Lectures, California, Institute of Technology W.A.Benjamin, Inc.Advanced Book Program Reading, Massachusets, Russian transl. Moscow "Mir", 1978, 407 pp.
  25. Von Neumann, J., (1932) Mathematische Grundlagen der Quanten- mechanic, Berlin, Russian transl. Moscow "Nauka", 1964, 368 pp.
  26. Shalyt-Margolin, A.E., (2004, 1) Non-Unitary and Unitary Transi- tions in Generalized Quantum Mechanics, New Small Parameter and Information Problem Solving, Modern Physics Letters A.19. no 5, 391-403
  27. Shalyt-Margolin, A.E., (2004, 2) Pure States, Mixed States and Hawking Problem in Generalized Quantum Mechanics, Modern Physics Letters A.19. no 27, 2037-2045
  28. Bekenstein, J., (1973) Black holes and entropy, Physical Re- view. D 7, no 5, 2333 -2341
  29. Hawking, S., (1976) Breakdown of Predictability in Gravita- tional Collapse, Physical Review. D 14, no 6, 2460-2472.
  30. Shalyt-Margolin, A. E., (2006) Deformed Density Matrix and Quantum Entropy of the Black Hole, Entropy 8, no 1, 31 -43
  31. Medved, A. J. M., Vagenas, E., (2004) When conceptual worlds collide: The GUP and the BH entropy. Physical Review. D70, 124021
  32. Cardoso, V., Berti, E., Cavaglia, M., (2005) What we (don't) know about black hole formation in high-energy collisions, ClassIcal and Quantum Gravity 22, L61-R84
  33. Bolen, B., Cavaglia M., (2005) (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle, General Relativity and Gravity 37, 1255-1262
  34. Adler, R., J., Chen, P., Santiago, D., I., (2001) The General- ized Uncertainty Principle and Black Hole Remnants, General Relativity and Gravity 33, 2101-2108
  35. Chen, P., Adler, R., J., (2003) Black Hole Remnants and Dark Matter, Nuclear Physics Proceeding Supplement 124, 103-106
  36. Chen, P., (2003) Generalized Uncertainty Principle and Dark Matter, "Beijing 2002: Frontiers of Science", 497-503, World Scien- tific .
  37. Shalyt-Margolin, A. E., (2004, 3) The Universe as a Nonuni- form Lattice in Finite-Volume Hypercube I. Fundamental Definitions and Particular Features, International Journal of Modern Physics., D. 13, no 5, 853-863
  38. Shalyt-Margolin, A.E., (2005, 2) The Universe as a Nonuniform Lattice in Finite-Volume Hypercube II. Simple Cases of Symme- try Breakdown and Restoration, International Journal of Modern Physics., A. 20, no 21, 4951-4964
  39. Maggiore, M., (1994) Quantum Groups, Gravity and General- ized Uncertainty Principle, Physical Review D 49, no 11, 5182 -5189
  40. Bousso, R., (2002) The holographic principle, Review in Mod- ern Physics, 74, no 4, 825-874
  41. t Hooft, G., (1993) Dimension reduction in quantum grav- ity, [gr-qc/9310026], 13pp.; (2000) The Holographic Principle, (OpeningLecture),[hep-th/0003004], 14pp.
  42. Susskind, L., (1995) The world as a hologram, Journal of Mathemat- ical Physics 36, no 5, 6377-6396.
  43. Bekenstein, J., (1974) Generalized second law of thermodynam- ics of black hole physics, Physical Review. D 9, no 8, 3292 -2307.
  44. Ahluwalia -Khalilova D. V., (2005) Minimal spatio-temporal extent of events, neutrinos, and the cosmological constant problem, International Journal .Modern Physics D14, 2151-2166
  45. Vilela-Mendes, R., (1994) Deformations, stable theories and fundamental constants, Journal of Physycs. A 27, no 9, 8091-8104.
  46. Chryssomalakos, C., Okon, E., (2004) Generalized Quantum Relativistic Kinematics: a Stability Point of View, International Journal of Modern Physics., D. 13, no 11, 2003-2034