Entropy in the Present and Early Universe
2008, arXiv: High Energy Physics - Theory
Abstract
This is a short analysis of the changes in the concept of entropy as applied to physics of the present-day and Early Universe. Of special interest is a leading role of such a notion as deformation of a physical theory. The relation to a symmetry of the corresponding theory is noted. As this work is not a survey, the relevant author's works are mainly considered. This paper is to be published in special issue "Symmetry and Entropy" of journal SYMMETRY: Culture and Science
References (46)
- Faddeev, L. D., (1989) Mathematical View on Evolution of Physics, Priroda, no. 5, 11-16
- Gerstenhaber, M., (1964) On the deformation of rings and al- gebras, Ann. of Math. 79, no.1, 59-103.
- Weyl, H., (1931) The theory of groups and quantum mechanics, Dover Publications 2rd ed, Russian transl. Moscow "Nauka", 1986, 495 pp.
- Heisenberg, W., (1927) Uber den anschaulichen Inhalt der quanten- theoretischen Kinematik und Mechanik, Zeitsch .fur Phys, 43, no. 2, 172-177
- Kaku, M., (1988) Introduction to Superstring, Springer-Verlag, Russian transl. Moscow "Mir", 1999, 624 pp.
- Veneziano, G., (1986) A stringly nature needs just two con- stant Europhysics Letters, 2, no. 1, 199-204
- Witten, E., (1996) Reflections on the Fate of Spacetime, Physics Today, 49, 24-31
- Adler, R.J., Santiago, D. I., (1999) On Gravity and the Uncer- tainty Principle, Modern Physics Letters. A, 14, no. 18, 1371-1378
- Dirac, P. A. M., (1958) The principles of quantum mechanics, Oxford at the Calderon Press 4rd ed, Russian transl. Moscow "Nauka", 1979, 480 pp.
- Maggiore, M., (1993) The algebraic structure of the generalized uncertainty principle, Physics Letters, B319, no. 1, 83-86
- Kempf, A., Mangano, G., Mann, R.B., (1995) Hilbert Space Representation of the Minimal Length Uncertainty Relation, Physical Review. D 52 , no.5, 1108-1123
- Blum, K., (1981) Density matrix theory and applications, Plenum Press, Russian transl. Moscow "Mir", 1983, 248 pp.
- Shalyt-Margolin, A.E., Suarez, J.G., (2003) Quantum Mechan- ics at Planck's scale and Density Matrix, International Journal of Modern Physics., D.12, no. 7,1265 -1278
- Shalyt-Margolin, A.E., (2005, 1) The Density Matrix Deforma- tion in Physics of the Early Universe and Some of its Implications, "Quantum Cosmology Research Trends .Chapter2." Horizons in World Physics, Vol. 246,49-91, Nova Science Publishers, Inc., Hauppauge, NY.
- Messiah, A., (1965). Quantum Mechanics.v.1 -Amsterdam: North-Holland. Russian transl. Moscow "Nauka", 1978, 480 pp.
- Shalyt-Margolin, A.E., Tregubovich, A.Ya., (2004) Deformed Density Matrix and Generalized Uncertainty Relation in Thermody- namics, Modern Physics Letters A.19. no 1, 71-81
- Bohr, N. (1932) Faraday Lectures, Chemical Society, London, pp. 349-384, 376-377.
- Heisenberg, W., (1969) Der Teil und Das Ganze, ch 9 R.Piper, Munchen
- Lavenda, B. H, (1991) Statistical Physics: a Probabilistic Ap- proach, Wiley-Interscience and Publication, N.Y. 432pp.
- Uffink, J., van Lith-van Dis, J., (1999) Thermodynamic Uncer- tainty Relation, Found.of Phys. 29, no3, 655-679.
- Carroll, R., (2006) Fluctuations, Information, Gravity and the Quantum Potential. Fundamental Theory in Physics 148. 454 pp.
- Adami, C., The Physics of Information, Review Article, quant-ph/0405005, 28pp.
- Shannon, C.,(1948) A mathematical theory of communication. Bell System Technical Journal 27, 379-423 ibid, 623-656.
- Feynman R.P., (1972) Statistical Mechanics. A Set of Lectures, California, Institute of Technology W.A.Benjamin, Inc.Advanced Book Program Reading, Massachusets, Russian transl. Moscow "Mir", 1978, 407 pp.
- Von Neumann, J., (1932) Mathematische Grundlagen der Quanten- mechanic, Berlin, Russian transl. Moscow "Nauka", 1964, 368 pp.
- Shalyt-Margolin, A.E., (2004, 1) Non-Unitary and Unitary Transi- tions in Generalized Quantum Mechanics, New Small Parameter and Information Problem Solving, Modern Physics Letters A.19. no 5, 391-403
- Shalyt-Margolin, A.E., (2004, 2) Pure States, Mixed States and Hawking Problem in Generalized Quantum Mechanics, Modern Physics Letters A.19. no 27, 2037-2045
- Bekenstein, J., (1973) Black holes and entropy, Physical Re- view. D 7, no 5, 2333 -2341
- Hawking, S., (1976) Breakdown of Predictability in Gravita- tional Collapse, Physical Review. D 14, no 6, 2460-2472.
- Shalyt-Margolin, A. E., (2006) Deformed Density Matrix and Quantum Entropy of the Black Hole, Entropy 8, no 1, 31 -43
- Medved, A. J. M., Vagenas, E., (2004) When conceptual worlds collide: The GUP and the BH entropy. Physical Review. D70, 124021
- Cardoso, V., Berti, E., Cavaglia, M., (2005) What we (don't) know about black hole formation in high-energy collisions, ClassIcal and Quantum Gravity 22, L61-R84
- Bolen, B., Cavaglia M., (2005) (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle, General Relativity and Gravity 37, 1255-1262
- Adler, R., J., Chen, P., Santiago, D., I., (2001) The General- ized Uncertainty Principle and Black Hole Remnants, General Relativity and Gravity 33, 2101-2108
- Chen, P., Adler, R., J., (2003) Black Hole Remnants and Dark Matter, Nuclear Physics Proceeding Supplement 124, 103-106
- Chen, P., (2003) Generalized Uncertainty Principle and Dark Matter, "Beijing 2002: Frontiers of Science", 497-503, World Scien- tific .
- Shalyt-Margolin, A. E., (2004, 3) The Universe as a Nonuni- form Lattice in Finite-Volume Hypercube I. Fundamental Definitions and Particular Features, International Journal of Modern Physics., D. 13, no 5, 853-863
- Shalyt-Margolin, A.E., (2005, 2) The Universe as a Nonuniform Lattice in Finite-Volume Hypercube II. Simple Cases of Symme- try Breakdown and Restoration, International Journal of Modern Physics., A. 20, no 21, 4951-4964
- Maggiore, M., (1994) Quantum Groups, Gravity and General- ized Uncertainty Principle, Physical Review D 49, no 11, 5182 -5189
- Bousso, R., (2002) The holographic principle, Review in Mod- ern Physics, 74, no 4, 825-874
- t Hooft, G., (1993) Dimension reduction in quantum grav- ity, [gr-qc/9310026], 13pp.; (2000) The Holographic Principle, (OpeningLecture),[hep-th/0003004], 14pp.
- Susskind, L., (1995) The world as a hologram, Journal of Mathemat- ical Physics 36, no 5, 6377-6396.
- Bekenstein, J., (1974) Generalized second law of thermodynam- ics of black hole physics, Physical Review. D 9, no 8, 3292 -2307.
- Ahluwalia -Khalilova D. V., (2005) Minimal spatio-temporal extent of events, neutrinos, and the cosmological constant problem, International Journal .Modern Physics D14, 2151-2166
- Vilela-Mendes, R., (1994) Deformations, stable theories and fundamental constants, Journal of Physycs. A 27, no 9, 8091-8104.
- Chryssomalakos, C., Okon, E., (2004) Generalized Quantum Relativistic Kinematics: a Stability Point of View, International Journal of Modern Physics., D. 13, no 11, 2003-2034