Managing and mining
Sign up for access to the world's latest research
Related papers
2011
After the Twente Data Management workshop on Uncertainty in Databases held at the university of Twente in June 2006, the speakers and participants expressed their wish for a workshop on the same topic colocated with a large, international conference. This Management of Uncertain Data workshop, colocated with the international conference on Very Large DataBases (VLDB) is the result of this wish. We received 9 submissions from all over the world.
bvicam.ac.in
Databases today are deterministic, that is, an item is either in the database or not. Similarly, a tuple is either in the query result or not. This process of mapping the real world inherently includes ambiguities and uncertainties and is seldom perfect. In today's data-driven competitive world a wide range of applications have emerged that needs to handle very large, imprecise data sets with inherent uncertainties. Uncertain data is natural in many important real world applications like environmental surveillance, market analysis and quantitative economic research. Data uncertainty innate in these important real world applications is generally the result of factors like data randomness and incompleteness, misaligned schemas, limitations of measuring equipment, delayed data update, imprecise queries etc . Due to the importance of these applications and the rapidly increasing amount of uncertain data collected and accumulated, analyzing large collections of uncertain data has become an important task and has attracted more and more interest from the database community. Probabilistic Databases hold the promise of being a viable means for large-scale uncertainty management, increasingly being required in a large number of real world application domains . A probabilistic database is an uncertain database in which the possible worlds have associated probabilities, that is, an item belongs to the database is a probabilistic event either with tuple-existence uncertainty or with attribute-value uncertainty. However, a tuple as an answer to query is again a probabilistic event. An important aspect in tackling the research and development on uncertain data processing is the query answering techniques on uncertain and probabilistic data. Query processing in probabilistic databases remains a computational challenge as it is fundamentally more complex than other data models. There exists a rich collection of powerful, non-trivial techniques and results, some old, some very recent, that could lead to practical management techniques for probabilistic databases. However, all such techniques suffer from limitations of uncertainty inherent in result of the query. Hence, there is a need for a general probabilistic model that tackles this uncertainty at the grass root level. The basic tool for dealing with this uncertainty is probability which is defined for an event as the proportion of times that the event would occur in repetitions of essentially identical situations. Although useful and successful in many applications, probability theory is, in fact, appropriate for dealing with only a very special type of uncertainty for measuring information. Probabilistic databases are all the more susceptible to uncertainties in query results being exclusively dependent on the probabilities assigned with inherent uncertainty in the evaluation of probabilities. Thus it becomes a potential area where this fundamental problem can be addressed and a suitable correction can be made to probabilities evaluated thereof.
Foundations and Trends® in Databases
Probabilistic data is motivated by the need to model uncertainty in large databases. Over the last twenty years or so, both the Database community and the AI community have studied various aspects of probabilistic relational data. This survey presents the main approaches developed in the literature, reconciling concepts developed in parallel by the two research communities. The survey starts with an extensive discussion of the main probabilistic data models and their relationships, followed by a brief overview of model counting and its relationship to probabilistic data. After that, the survey discusses lifted probabilistic inference, which are a suite of techniques developed in parallel by the Database and AI communities for probabilistic query evaluation. Then, it gives a short summary of query compilation, presenting some theoretical results highlighting limitations of various query evaluation techniques on probabilistic data. The survey ends with a very brief discussion of some popular probabilistic data sets, systems, and applications that build on this technology.
Cidr, 2007
The Web contains a huge amount of text that is currently beyond the reach of structured access tools. This unstructured data often contains a substantial amount of implicit structure, much of which can be captured using information extraction (IE) algorithms. By combining an IE system with an appropriate data model and query language, we could enable structured access to all of the Web's unstructured data. We propose a general-purpose query system called the extraction database, or ExDB, which supports SQL-like structured queries over Web text. We also describe the technical challenges involved, motivated in part by our experiences with an early 90M-page prototype.
2009
Abstract Graphical models are a popular and well-studied framework for compact representation of a joint probability distribution over a large number of interdependent variables, and for efficient reasoning about such a distribution. They have been proven useful in a wide range of domains from natural language processing to computer vision to bioinformatics. In this chapter, we present an approach to using graphical models for managing and querying large-scale uncertain databases.
2011
Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo. The series will publish 50-to 125 page publications on topics pertaining to data management. The scope will largely follow the purview of premier information and computer science conferences, such as ACM SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include, but not are limited to: query languages, database system architectures, transaction management, data warehousing, XML and databases, data stream systems, wide scale data distribution, multimedia data management, data mining, and related subjects.
ACM SIGACT News, 2008
The 26th edition of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Databases (PODS), took place from 11 to 13 June 2007. As usual since 1991, the symposium was organized jointly with the ACM SIGMOD International Conference on Management of Data. While SIGMOD focuses on practical aspects of database systems, PODS focuses on the theory of such systems. The joint organization stimulates interaction between systems and theory research. For the first time ever the joint SIGMOD/PODS conference was held in Asia: it took place in Beijing, China.
2008
Many applications today need to manage large data sets with uncertainties. In this paper we describe the foundations of managing data where the uncertainties are quantified as probabilities. We review the basic definitions of the probabilistic data model, present some fundamental theoretical result for query evaluation on probabilistic databases, and discuss several challenges, open problems, and research directions.
2007
The Web contains a huge amount of text that is currently beyond the reach of structured access tools. This unstructured data often contains a substantial amount of implicit structure, much of which can be captured using information extraction (IE) algorithms. By combining an IE system with an appropriate data model and query language, we could enable structured access to all of the Web's unstructured data. We propose a general-purpose query system called the extraction database, or ExDB, which supports SQL-like structured queries over Web text. We also describe the technical challenges involved, motivated in part by our experiences with an early 90M-page prototype.

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.