Academia.eduAcademia.edu

Outline

Query Processing on Probabilistic Data: A Survey

Foundations and Trends® in Databases

https://doi.org/10.1561/1900000052

Abstract

Probabilistic data is motivated by the need to model uncertainty in large databases. Over the last twenty years or so, both the Database community and the AI community have studied various aspects of probabilistic relational data. This survey presents the main approaches developed in the literature, reconciling concepts developed in parallel by the two research communities. The survey starts with an extensive discussion of the main probabilistic data models and their relationships, followed by a brief overview of model counting and its relationship to probabilistic data. After that, the survey discusses lifted probabilistic inference, which are a suite of techniques developed in parallel by the Database and AI communities for probabilistic query evaluation. Then, it gives a short summary of query compilation, presenting some theoretical results highlighting limitations of various query evaluation techniques on probabilistic data. The survey ends with a very brief discussion of some popular probabilistic data sets, systems, and applications that build on this technology.

References (207)

  1. Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel Madden. The design and implementation of modern column- oriented database systems. Foundations and Trends in Databases, 5(3):197- 280, 2013.
  2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.
  3. Sameer Agarwal et al. Blinkdb: queries with bounded errors and bounded response times on very large data. In Proc. of EuroSys'13, pages 29-42, 2013.
  4. Babak Ahmadi, Kristian Kersting, and Sriraam Natarajan. Lifted online training of relational models with stochastic gradient methods. In ECML PKDD, pages 585-600, 2012.
  5. Sheldon B. Akers Jr. Binary decision diagrams. IEEE Trans. Computers, 27(6): 509-516, 1978.
  6. Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and treelike instances. In Automata, Languages, and Programming -42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages 56-68, 2015.
  7. Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike instances: Limits and extensions. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys- tems, PODS 2016, San Francisco, CA, USA, June 26 -July 01, 2016, pages 355-370, 2016.
  8. Ankit Anand, Ritesh Noothigattu, Parag Singla, and Mausam. Non-count symmetries in boolean & multi-valued prob. graphical models. In Artificial Intelligence and Statistics, pages 1541-1549, 2017.
  9. Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: Managing incomplete information with probabilistic world-set decompositions. In ICDE, pages 1479-1480, 2007.
  10. F. Bacchus. Representing and reasoning with probabilistic knowledge: a log- ical approach to probabilities. 1991.
  11. Vince Barany, Balder ten Cate, Benny Kimelfeld, Dan Olteanu, and Zo- grafoula Vagena. Declarative probabilistic programming with datalog. In LIPIcs-Leibniz International Proceedings in Informatics, volume 48. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
  12. Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The management of probabilistic data. IEEE Trans. Knowl. Data Eng., 4(5):487-502, 1992.
  13. Paul Beame and Vincent Liew. New limits for knowledge compilation and applications to exact model counting. In Proceedings of the Thirty-First Con- ference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands, pages 131-140, 2015.
  14. Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Lower bounds for exact model counting and applications in probabilistic databases. In UAI, pages 157-162, 2013.
  15. Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Counting of query ex- pressions: Limitations of propositional methods. In ICDT, pages 177-188, 2014.
  16. Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Exact model counting of query expressions: Limitations of propositional methods. ACM TODS, 2017. (to appear).
  17. Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. ULDBs: Databases with uncertainty and lineage. In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12- 15, 2006, pages 953-964, 2006a.
  18. Omar Benjelloun, Anish Das Sarma, Chris Hayworth, and Jennifer Widom. An introduction to ULDBs and the Trio system. IEEE Data Eng. Bull., 29 (1):5-16, 2006b.
  19. Simone Bova. Sdds are exponentially more succinct than obdds. In Proceed- ings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 929-935, 2016. References
  20. Randal E. Bryant. Graph-based algorithms for boolean function manipula- tion. IEEE Trans. Computers, 35(8):677-691, 1986.
  21. Hung Hai Bui, Tuyen N Huynh, Artificial Intelligence Center, and Sebastian Riedel. Automorphism groups of graphical models and lifted variational inference. In UAI, page 132, 2013.
  22. Wray L. Buntine. Operations for learning with graphical models. JAIR, 2: 159-225, 1994.
  23. Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr- uschka Jr., and Tom M. Mitchell. Toward an architecture for never-ending language learning. In AAAI, 2010.
  24. Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases. In VLDB'87, Proceedings of 13th International Conference on Very Large Data Bases, September 1-4, 1987, Brighton, England, pages 71-81, 1987.
  25. Ismail Ilkan Ceylan, Adnan Darwiche, and Guy Van den Broeck. Open- world probabilistic databases. In Proceedings of the 15th International Con- ference on Principles of Knowledge Representation and Reasoning (KR), 2016.
  26. Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y. Vardi. Distribution-aware sampling and weighted model counting for SAT. In Proceedings of the National Conference on Artificial Intel- ligence, pages 1722-1730, 2014.
  27. Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, and Moshe Y. Vardi. From weighted to unweighted model counting. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 689-695, 2015.
  28. Surajit Chaudhuri. An overview of query optimization in relational systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sympo- sium on Principles of Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages 34-43, 1998.
  29. M. Chavira and A. Darwiche. Compiling Bayesian networks with local struc- ture. In Proceedings of IJCAI, volume 5, pages 1306-1312, 2005.
  30. M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. AIJ, 172(6-7):772-799, 2008.
  31. Yang Chen and Daisy Zhe Wang. Knowledge expansion over probabilistic knowledge bases. In International Conference on Management of Data, SIG- MOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 649-660, 2014.
  32. Arthur Choi and Adnan Darwiche. An edge deletion semantics for belief propagation and its practical impact on approximation quality. In Proceed- ings of the National Conference on Artificial Intelligence, volume 21, page 1107. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
  33. Arthur Choi and Adnan Darwiche. Relax, compensate and then recover. In JSAI International Symposium on Artificial Intelligence, pages 167-180. Springer, 2010.
  34. Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling probabilistic graphical models using sentential decision diagrams. In ECSQARU, pages 121-132, 2013.
  35. Jaesik Choi, Rodrigo de Salvo Braz, and Hung H. Bui. Efficient methods for lifted inference with aggregate factors. In AAAI, 2011.
  36. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990.
  37. Fabio G. Cozman. Credal networks. AIJ, 120(2):199-233, 2000. .
  38. Fabio Gagliardi Cozman and Denis Deratani Mauá. Bayesian networks spec- ified using propositional and relational constructs: Combined, data, and domain complexity. In AAAI, pages 3519-3525, 2015.
  39. Fabio Gagliardi Cozman and Denis Deratani Mauá. Probabilistic graphical models specified by probabilistic logic programs: Semantics and complex- ity. In Conference on Probabilistic Graphical Models, pages 110-122, 2016.
  40. Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864-875, 2004.
  41. Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data: foun- dations and challenges. In Proceedings of the Twenty-Sixth ACM SIGACT- SIGMOD-SIGART Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China, pages 1-12, 2007a.
  42. Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. VLDB J., 16(4):523-544, 2007b.
  43. Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM, 59(6):30, 2012.
  44. Adnan Darwiche. Any-space probabilistic inference. In Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages 133-142. Morgan Kaufmann Publishers Inc., 2000.
  45. Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608- 647, 2001.
  46. Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.
  47. Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pages 819-826, 2011.
  48. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Int. Res., 17(1):229-264, September 2002.
  49. Adnan Darwiche, Rina Dechter, Arthur Choi, Vibhav Gogate, and Lars Ot- ten. Results from the probablistic inference evaluation of UAI-08. 2008.
  50. Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201-215, 1960.
  51. Martin Davis, George Logemann, and Donald Loveland. A machine pro- gram for theorem-proving. Commun. ACM, 5(7):394-397, 1962.
  52. Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming con- cepts. Machine Learning, 100(1):5-47, 2015.
  53. Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A proba- bilistic prolog and its application in link discovery. In Proceedings of the 20th international joint conference on Artifical intelligence, pages 2468-2473, 2007.
  54. Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statis- tical relational artificial intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and Machine Learning, 10(2):1-189, 2016.
  55. Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order proba- bilistic inference. In IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 -August 5, 2005, pages 1319-1325, 2005.
  56. Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference. Journal of the ACM (JACM), 50(2):107-153, 2003.
  57. Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and Wei Hong. Model-driven data acquisition in sensor networks. In (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 -September 3 2004, pages 588-599, 2004.
  58. Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang. Sample+seek: Approximating aggregates with distribution preci- sion guarantee. In Proc. SIGMOD, pages 679-694, 2016.
  59. Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Arti- ficial Intelligence. Morgan & Claypool Publishers, 2009.
  60. Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, New York, NY, USA -August 24 -27, 2014, pages 601- 610, 2014.
  61. Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. Opti- mization with parity constraints: from binary codes to discrete integration. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial In- telligence, pages 202-211. AUAI Press, 2013.
  62. Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld. Open information extraction from the web. Commun. ACM, 51(12):68-74, 2008.
  63. Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open information extraction. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1535-1545, 2011.
  64. Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reason- ing about probabilities. Inf. Comput., 87(1/2):78-128, 1990.
  65. Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, and Jan Ramon. Logi- cal Bayesian networks and their relation to other probabilistic logical mod- els. Inductive Logic Programming, pages 121-135, 2005.
  66. Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. Infer- ence and learning in probabilistic logic programs using weighted boolean formulas. TPLP, 15(3):358-401, 2015. .
  67. Robert Fink and Dan Olteanu. A dichotomy for non-repeating queries with negation in probabilistic databases. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '14, pages 144-155, New York, NY, USA, 2014. ACM. .
  68. Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning prob- abilistic relational models. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 -Au- gust 6, 1999. 2 Volumes, 1450 pages, pages 1300-1309, 1999. References
  69. Norbert Fuhr. A probabilistic relational model for the integration of IR and databases. In Proceedings of the 16th Annual International ACM-SIGIR Con- ference on Research and Development in Information Retrieval. Pittsburgh, PA, USA, June 27 -July 1, 1993, pages 309-317, 1993. .
  70. Norbert Fuhr and Thomas Rölleke. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32-66, 1997.
  71. Wolfgang Gatterbauer and Dan Suciu. Oblivious bounds on the probability of boolean functions. ACM Trans. Database Syst., 39(1):5, 2014.
  72. Wolfgang Gatterbauer and Dan Suciu. Approximate lifted inference with probabilistic databases. PVLDB, 8(5):629-640, 2015.
  73. Erol Gelenbe and Georges Hébrail. A probability model of uncertainty in data bases. In Proceedings of the Second International Conference on Data En- gineering, February 5-7, 1986, Los Angeles, California, USA, pages 328-333, 1986.
  74. Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning series). MIT Press, 2007.
  75. Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation us- ing probabilistic models. In Proceedings of the 2001 ACM SIGMOD interna- tional conference on Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 461-472, 2001.
  76. Boris Glavic and Gustavo Alonso. Perm: Processing provenance and data on the same data model through query rewriting. In Proceedings of the 25th International Conference on Data Engineering, ICDE, pages 174-185, 2009.
  77. Vibhav Gogate and Pedro Domingos. Probabilistic theorem proving. In UAI, pages 256-265, 2011.
  78. Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. Factoring and recog- nition of read-once functions using cographs and normality and the read- ability of functions associated with partial k-trees. Discrete Applied Mathe- matics, 154(10):1465-1477, 2006.
  79. Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting. In Handbook of Satisfiability, pages 633-654. 2009.
  80. Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. Church: A language for generative models. In Proceedings of UAI, pages 220-229, 2008.
  81. Goetz Graefe. Query evaluation techniques for large databases. ACM Com- put. Surv., 25(2):73-170, 1993.
  82. Todd J. Green and Val Tannen. Models for incomplete and probabilistic in- formation. IEEE Data Eng. Bull., 29(1):17-24, 2006.
  83. Eric Gribkoff and Dan Suciu. Slimshot: In-database probabilistic inference for knowledge bases. PVLDB, 9(7):552-563, 2016.
  84. Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. Understanding the com- plexity of lifted inference and asymmetric weighted model counting. In UAI, pages 280-289, 2014a.
  85. Eric Gribkoff, Dan Suciu, and Guy Van den Broeck. Lifted probabilistic in- ference: A guide for the database researcher. IEEE Data Eng. Bull., 37(3): 6-17, 2014b.
  86. Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. The most probable database problem. In Proceedings of the First International Workshop on Big Uncertain Data (BUDA), June 2014c.
  87. Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Struc- ture Theory. LNCS, 2017. (to appear).
  88. Joseph Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence, 46(3):311-350, 1990.
  89. Joseph Y. Halpern. Reasoning about uncertainty. MIT Press, 2003.
  90. Jochen Heinsohn. Probabilistic description logics. In Proceedings of the Tenth international conference on Uncertainty in artificial intelligence, pages 311-318. Morgan Kaufmann Publishers Inc., 1994.
  91. Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In Proc. of SIGMOD, pages 171-182, 1997.
  92. W. Hoeffding. Probability inequalities for sums of bounded random vari- ables. Journal of the American Statistical Association, 58(301):13-30, 1963.
  93. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:28-61, 2013.
  94. Michael C. Horsch and David L. Poole. A dynamic approach to probabilistic inference. In Proceedings of UAI, 1990.
  95. Jinbo Huang and Adnan Darwiche. Dpll with a trace: From sat to knowledge compilation. In IJCAI, pages 156-162, 2005.
  96. Edward Hung, Lise Getoor, and VS Subrahmanian. Probabilistic interval xml. In International Conference on Database Theory, pages 361-377. Springer, 2003. References
  97. Tomasz Imielinski and Witold Lipski, Jr. Incomplete information in relational databases. J. ACM, 31(4):761-791, 1984.
  98. Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concen- tration bounds. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Opti- mization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, volume 6302 of Lecture Notes in Computer Science, pages 617-631. Springer, 2010.
  99. Manfred Jaeger. Relational Bayesian networks. In Proceedings of the Thir- teenth conference on Uncertainty in artificial intelligence, pages 266-273. Mor- gan Kaufmann Publishers Inc., 1997.
  100. Manfred Jaeger. On the complexity of inference about probabilistic relational models. Artificial Intelligence, 117(2):297-308, 2000.
  101. Manfred Jaeger and Guy Van den Broeck. Liftability of probabilistic infer- ence: Upper and lower bounds. In Proceedings of the 2nd International Work- shop on Statistical Relational AI, 2012.
  102. Ariel Jaimovich, Ofer Meshi, and Nir Friedman. Template based infer- ence in symmetric relational markov random fields. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pages 191- 199. AUAI Press, 2007.
  103. Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jer- maine, and Peter J Haas. Mcdb: a monte carlo approach to managing uncertain data. In Proceedings of the 2008 ACM SIGMOD international con- ference on Management of data, pages 687-700. ACM, 2008.
  104. Christopher M. Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scalable approximate query processing with the DBO engine. In Proc. of SIGMOD, pages 725-736, 2007.
  105. Yacine Jernite, Alexander M Rush, and David Sontag. A fast variational ap- proach for learning Markov random field language models. In ICML, 2015.
  106. Abhay Jha, Vibhav Gogate, Alexandra Meliou, and Dan Suciu. Lifted in- ference seen from the other side: The tractable features. In NIPS, pages 973-981, 2010.
  107. Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: compiling queries to decision diagrams. In Database Theory -ICDT 2011, 14th International Conference, Uppsala, Sweden, March 21-24, 2011, Pro- ceedings, pages 162-173, 2011.
  108. Abhay Kumar Jha and Dan Suciu. Probabilistic databases with markoviews. PVLDB, 5(11):1160-1171, 2012.
  109. Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: Compiling queries to decision diagrams. Theory Comput. Syst., 52 (3):403-440, 2013.
  110. Bhargav Kanagal, Jian Li, and Amol Deshpande. Sensitivity analysis and explanations for robust query evaluation in probabilistic databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 841-852, 2011.
  111. Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl, Surajit Chaudhuri, and Bolin Ding. Quickr: Lazily approx- imating complex adhoc queries in bigdata clusters. In Proc. of SIGMOD, pages 631-646, 2016.
  112. Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumera- tion and reliability problems. In 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 56-64, 1983.
  113. Seyed Mehran Kazemi and David Poole. Elimination ordering in first-order probabilistic inference. In AAAI, 2014.
  114. Seyed Mehran Kazemi and David Poole. Knowledge compilation for lifted probabilistic inference: Compiling to a low-level language. In KR, 2016.
  115. Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck, and David Poole. New liftable classes for first-order probabilistic inference. In Ad- vances in Neural Information Processing Systems 29 (NIPS), December 2016.
  116. Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilistic logic programming with the power of maximum entropy. Artificial Intelli- gence, 157(1-2):139-202, 2004.
  117. Kristian Kersting and Luc De Raedt. Bayesian logic programs. arXiv preprint cs/0111058, 2001.
  118. Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan. Counting belief propagation. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 277-284. AUAI Press, 2009.
  119. Benny Kimelfeld and Yehoshua Sagiv. Matching twigs in probabilistic xml. In Proceedings of the 33rd international conference on Very large data bases, pages 27-38. VLDB Endowment, 2007. References
  120. Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. A short introduction to probabilistic soft logic. In Proceedings of the NIPS Workshop on Probabilistic Programming: Foundations and Applications, pages 1-4, 2012.
  121. Timothy Kopp, Parag Singla, and Henry Kautz. Lifted symmetry detection and breaking for MAP inference. In NIPS, pages 1315-1323, 2015.
  122. Donald Kossmann. The state of the art in distributed query processing. ACM Comput. Surv., 32(4):422-469, 2000.
  123. Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S. Subrahma- nian. Probview: A flexible probabilistic database system. ACM Trans. Database Syst., 22(3):419-469, 1997.
  124. C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System Technical Journal, 38:985-999, 1959.
  125. Jian Li and Amol Deshpande. Consensus answers for queries over prob- abilistic databases. In Proceedings of the Twenty-Eigth ACM SIGMOD- SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 -July 1, 2009, Providence, Rhode Island, USA, pages 259-268, 2009. .
  126. Jian Li, Barna Saha, and Amol Deshpande. A unified approach to ranking in probabilistic databases. VLDB J., 20(2):249-275, 2011.
  127. Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
  128. Leonid Libkin. SQL's three-valued logic and certain answers. In 18th Interna- tional Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium, pages 94-109, 2015.
  129. Daniel Lowd and Pedro Domingos. Efficient weight learning for markov logic networks. In European Conference on Principles of Data Mining and Knowledge Discovery, pages 200-211. Springer, 2007.
  130. Thomas Lukasiewicz. Expressive probabilistic description logics. Artificial Intelligence, 172(6):852-883, 2008.
  131. Andrew McCallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic programming via imperatively defined factor graphs. In Neural Informa- tion Processing Systems (NIPS), 2009.
  132. Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of markov logic network structure. In Proceedings of the 24th international conference on Machine learning, pages 625-632. ACM, 2007.
  133. Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data exchange. J. Comput. Syst. Sci., 73(3):507-534, 2007.
  134. B. Milch, B. Marthi, S. Russell, D. Sontag, D.L. Ong, and A. Kolobov. BLOG: Probabilistic models with unknown objects. Introduction to statistical rela- tional learning, page 373, 2007.
  135. Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling. Lifted probabilistic inference with counting formu- lae. In AAAI, pages 1062-1068, 2008.
  136. Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr., Partha Pra- tim Talukdar, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew Gardner, Bryan Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Ndapandula Nakashole, Emmanouil Anto- nios Platanios, Alan Ritter, Mehdi Samadi, Burr Settles, Richard C. Wang, Derry Tanti Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair Saparov, Mal- colm Greaves, and Joel Welling. Never-ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 2302-2310, 2015.
  137. Katherine F. Moore, Vibhor Rastogi, Christopher Ré, and Dan Suciu. Query containment of tier-2 queries over a probabilistic database. In Proceedings of the Third VLDB workshop on Management of Uncertain Data (MUD2009) in conjunction with VLDB 2009, Lyon, France, August 28th, 2009., pages 47-62, 2009.
  138. S. Muggleton. Stochastic logic programs. Advances in inductive logic program- ming, 32:254-264, 1996.
  139. Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new de- velopments in the theory of join algorithms. SIGMOD Record, 42(4):5-16, 2013.
  140. Liem Ngo and Peter Haddawy. Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171(1):147- 177, 1997.
  141. Mathias Niepert. Markov chains on orbits of permutation groups. In UAI, 2012. Mathias Niepert and Guy Van den Broeck. Tractability through exchange- ability: A new perspective on efficient probabilistic inference. In Proceed- ings of the 28th AAAI Conference on Artificial Intelligence, AAAI Conference on Artificial Intelligence, July 2014.
  142. Andrew Nierman and HV Jagadish. Protdb: Probabilistic data in xml. In Proceedings of the 28th international conference on Very Large Data Bases, pages 646-657. VLDB Endowment, 2002.
  143. Nils J. Nilsson. Probabilistic logic. Artificial intelligence, 28(1):71-87, 1986. References
  144. Davide Nitti, Tinne De Laet, and Luc De Raedt. Probabilistic logic program- ming for hybrid relational domains. Machine Learning, 103(3):407-449, 2016. ISSN 1573-0565. .
  145. Feng Niu, Christopher Ré, AnHai Doan, and Jude W. Shavlik. Tuffy: Scaling up statistical inference in markov logic networks using an rdbms. PVLDB, 4(6):373-384, 2011.
  146. Dan Olteanu and Jiewen Huang. Using obdds for efficient query evalua- tion on probabilistic databases. In Scalable Uncertainty Management, Second International Conference, SUM 2008, Naples, Italy, October 1-3, 2008. Proceed- ings, pages 326-340, 2008.
  147. Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for conjunctive queries with inequalities. In SIGMOD Conference, pages 389-402, 2009.
  148. Dan Olteanu, Jiewen Huang, and Christoph Koch. Sprout: Lazy vs. eager query plans for tuple-independent probabilistic databases. In ICDE, pages 640-651, 2009.
  149. Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence computation in probabilistic databases. In Proceedings of the 26th Inter- national Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 145-156, 2010.
  150. M.A. Paskin. Maximum entropy probabilistic logic. Technical Report UCB/CSD-01-1161, Computer Science Division, University of California, Berkeley, 2002.
  151. Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann series in representation and reasoning. Mor- gan Kaufmann, 1988.
  152. Frederick E Petry. Fuzzy databases: principles and applications, volume 5. Springer Science & Business Media, 2012.
  153. Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River Analytics Technical Report, 2009.
  154. David Poole. Probabilistic horn abduction and Bayesian networks. Artificial intelligence, 64(1):81-129, 1993.
  155. David Poole. The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence, 94(1):7-56, 1997.
  156. David Poole. First-order probabilistic inference. In IJCAI, volume 3, pages 985-991, 2003.
  157. J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput., 12 (4):777-788, 1983.
  158. Christopher Ré and Dan Suciu. Materialized views in probabilistic databases for information exchange and query optimization. In Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007, pages 51-62, 2007.
  159. Christopher Ré and Dan Suciu. Managing probabilistic data with mystiq: The can-do, the could-do, and the can't-do. In Scalable Uncertainty Man- agement, Second International Conference, SUM 2008, Naples, Italy, October 1-3, 2008. Proceedings, pages 5-18, 2008.
  160. Christopher Ré and Dan Suciu. The trichotomy of HAVING queries on a probabilistic database. VLDB J., 18(5):1091-1116, 2009.
  161. Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evalu- ation on probabilistic data. In Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 886-895, 2007.
  162. Raymond Reiter. On closed world data bases. Logic and Data Bases, pages 55-76, 1978.
  163. Joris Renkens, Guy Van den Broeck, and Siegfried Nijssen. k-optimal: a novel approximate inference algorithm for problog. Machine learning, 89(3):215- 231, 2012.
  164. Joris Renkens, Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Explanation-based approximate weighted model counting for probabilis- tic logics. In AAAI Workshop: Statistical Relational Artificial Intelligence, 2014.
  165. Matthew Richardson and Pedro M. Domingos. Markov logic networks. Ma- chine Learning, 62(1-2):107-136, 2006.
  166. Fabrizio Riguzzi. A top down interpreter for lpad and cp-logic. In Congress of the Italian Association for Artificial Intelligence, pages 109-120. Springer, 2007.
  167. Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-2): 273-302, 1996.
  168. Stuart J. Russell. Unifying logic and probability. Commun. ACM, 58(7):88-97, 2015.
  169. Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. Combining component caching and clause learning for effective model counting. In SAT, 2004. References
  170. Taisuke Sato. A statistical learning method for logic programs with distri- bution semantics. In Proceedings of the 12th International Conference on Logic Programming (ICLP), pages 715-729. MIT Press, 1995.
  171. Taisuke Sato and Yoshitaka Kameya. PRISM: a language for symbolic- statistical modeling. In Proceedings of the International Joint Conference on Artificial Intelligence, volume 15, pages 1330-1339, 1997.
  172. Stefan Schoenmackers, Jesse Davis, Oren Etzioni, and Daniel S. Weld. Learn- ing first-order horn clauses from web text. In Proceedings of the 2010 Confer- ence on Empirical Methods in Natural Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata Center, Massachusetts, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1088-1098, 2010.
  173. Prithviraj Sen, Amol Deshpande, and Lise Getoor. Bisimulation-based ap- proximate lifted inference. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 496-505. AUAI Press, 2009.
  174. Pierre Senellart and Serge Abiteboul. On the complexity of managing proba- bilistic xml data. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT- SIGART symposium on Principles of database systems, pages 283-292. ACM, 2007.
  175. Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christo- pher Ré. Incremental knowledge base construction using deepdive. PVLDB, 8(11):1310-1321, 2015.
  176. Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne E. Hambrusch, and Rahul Shah. Orion 2.0: native support for uncertain data. In Proceedings of the ACM SIGMOD International Conference on Man- agement of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 1239-1242, 2008.
  177. Parag Singla and Pedro M Domingos. Lifted first-order belief propagation. In AAAI, volume 8, pages 1094-1099, 2008.
  178. Richard P. Stanley. Enumerative Combinatorics. Cambridge University Press, 1997.
  179. Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.
  180. Nima Taghipour, Jesse Davis, and Hendrik Blockeel. First-order decompo- sition trees. In Advances in Neural Information Processing Systems, pages 1052-1060, 2013.
  181. Octavian Udrea, V.S. Subrahmanian, and Zoran Majkic. Probabilistic RDF. In 2006 IEEE International Conference on Information Reuse & Integration, pages 172-177. IEEE, 2006.
  182. Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput., 31(2):398-427, 2001.
  183. Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 1979a.
  184. Leslie G. Valiant. The complexity of computing the permanent. Theor. Com- put. Sci., 8:189-201, 1979b.
  185. Guy Van den Broeck. On the completeness of first-order knowledge compi- lation for lifted probabilistic inference. In Advances in Neural Information Processing Systems 24 (NIPS),, pages 1386-1394, 2011.
  186. Guy Van den Broeck. Lifted Inference and Learning in Statistical Relational Mod- els. PhD thesis, KU Leuven, January 2013.
  187. Guy Van den Broeck. Towards high-level probabilistic reasoning with lifted inference. In Proceedings of the AAAI Spring Symposium on KRR, 2015.
  188. Guy Van den Broeck and Adnan Darwiche. On the complexity and approx- imation of binary evidence in lifted inference. In Advances in Neural Infor- mation Processing Systems 26 (NIPS), December 2013.
  189. Guy Van den Broeck and Jesse Davis. Conditioning in first-order knowledge compilation and lifted probabilistic inference. In Proceedings of the Twenty- Sixth AAAI Conference on Artificial Intelligence, pages 1-7. AAAI Press, 2012.
  190. Guy Van den Broeck and Mathias Niepert. Lifted probabilistic inference for asymmetric graphical models. In Proceedings of the 29th Conference on Arti- ficial Intelligence (AAAI), 2015.
  191. Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt. Lifted probabilistic inference by first-order knowledge com- pilation. In IJCAI, pages 2178-2185, 2011.
  192. Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Lifted relax, com- pensate and then recover: From approximate to exact lifted probabilistic inference. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI), 2012.
  193. Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. Skolemization for weighted first-order model counting. In KR, 2014.
  194. Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis. Lifted generative learning of Markov logic networks. Machine Learning, 103(1): 27-55, 2016. .
  195. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with anno- tated disjunctions. Logic Programming, pages 95-119, 2004.
  196. J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal probabilistic events and its relation to logic programming. Theory and Practice of Logic Programming, 9(3):245-308, 2009.
  197. Deepak Venugopal and Vibhav G. Gogate. Scaling-up importance sampling for Markov logic networks. In Advances in Neural Information Processing Systems, pages 2978-2986, 2014.
  198. Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. Anytime inference in probabilistic logic programs with Tp- compilation. In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.
  199. William Yang Wang, Kathryn Mazaitis, and William W Cohen. Programming with personalized pagerank: a locally groundable first-order probabilistic logic. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pages 2129-2138. ACM, 2013.
  200. Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.
  201. Michael Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilis- tic databases with factor graphs and mcmc. Proceedings of the VLDB En- dowment, 3(1-2):794-804, 2010.
  202. Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Qili Zhu. Probase: a probabilistic taxonomy for text understanding. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 481-492, 2012.
  203. Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. The analytical boot- strap: a new method for fast error estimation in approximate query pro- cessing. In SIGMOD Conference, pages 277-288, 2014.
  204. Ce Zhang. DeepDive: a data management system for automatic knowledge base construction. PhD thesis, 2015.
  205. Xi Zhang and Jan Chomicki. On the semantics and evaluation of top-k queries in probabilistic databases. In Proceedings of the 24th International Conference on Data Engineering Workshops, ICDE 2008, April 7-12, 2008, Can- cún, México, pages 556-563, 2008.
  206. Yuke Zhu, Alireza Fathi, and Li Fei-Fei. Reasoning about object affordances in a knowledge base representation. In European conference on computer vision, pages 408-424. Springer, 2014.
  207. Yuke Zhu, Ce Zhang, Christopher Ré, and Li Fei-Fei. Building a large-scale multimodal knowledge base system for answering visual queries. arXiv preprint arXiv:1507.05670, 2015.