Academia.eduAcademia.edu

Outline

Quantum critical transport, duality, and M theory

2007, Physical Review D

https://doi.org/10.1103/PHYSREVD.75.085020

Abstract

We consider charge transport properties of 2+1 dimensional conformal field theories at non-zero temperature. For theories with only Abelian U(1) charges, we describe the action of particle-vortex duality on the hydrodynamic-to-collisionless crossover function: this leads to powerful functional constraints for self-dual theories. For N =8 supersymmetric, SU(N ) Yang-Mills theory at the conformal fixed point, exact hydrodynamic-to-collisionless crossover functions of the SO(8) Rcurrents can be obtained in the large N limit by applying the AdS/CFT correspondence to Mtheory. In the gravity theory, fluctuating currents are mapped to fluctuating gauge fields in the background of a black hole in 3+1 dimensional anti-de Sitter space. The electromagnetic self-duality of the 3+1 dimensional theory implies that the correlators of the R-currents obey a functional constraint similar to that found from particle-vortex duality in 2+1 dimensional Abelian theories.

References (78)

  1. R. W. Crane, N. P. Armitage, A. Johansson, G. Sambandamurthy, D. Shahar, and G. Grüner, "Survival of Superconducting Correlations Across the 2D Superconductor-Insulator Transi- tion: A finite frequency study," cond-mat/0604107.
  2. M. A. Steiner, G. Boebinger, and A. Kapitulnik, "Possible Field-Tuned Superconductor- Insulator Transition in High-T c Superconductors: Implications for Pairing at High Magnetic Fields," Phys. Rev. Lett. 94, 107008 (2005), cond-mat/0406232.
  3. G. Sambandamurthy, L. W. Engel, A. Johansson, E. Peled, and D. Shahar, "Experimental Evidence for a Collective Insulating State in Two-Dimensional Superconductors," Phys. Rev. Lett. 94, 017003 (2005), cond-mat/0403480.
  4. D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi, "A Different View of the Quantum Hall Plateau-to-Plateau Transitions," Phys. Rev. Lett. 79, 479 (1997), cond-mat/9611011.
  5. L. W. Engel, D. Shahar, C ¸. Kurdak, and D. C. Tsui, "Microwave frequency dependence of integer quantum Hall effect: Evidence for finite-frequency scaling," Phys. Rev. Lett. 71, 2638 (1993).
  6. M. B. Stone, C. Broholm, D. H. Reich, P. Schiffer, O. Tchernyshyov, P. Vorderwisch, and N. Harrison, "Field-driven phase transitions in a quasi-two-dimensional quantum antiferro- magnet," New J. Phys. 9, 31 (2007), cond-mat/0611463.
  7. E. Demler, S. Sachdev and Y. Zhang, "Spin ordering quantum transitions of superconductors in a magnetic field," Phys. Rev. Lett. 87, 067202 (2001), cond-mat/0103192.
  8. B. Khaykovich, S. Wakimoto, R. J. Birgeneau, M. A. Kastner, and Y. S. Lee, P. Smeibidl, P. Vorderwisch, and K. Yamada, "Field-induced transition between magnetically disor- dered and ordered phases in underdoped La 2-x Sr x CuO 4 ," Phys. Rev. B 71, 220508 (2005), cond-mat/0411355.
  9. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, "Boson localization and the superfluid-insulator transition," Phys. Rev. B 40, 546 (1989).
  10. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39 (2002).
  11. I. B. Spielman, W. D. Phillips, and J. V. Porto, "Mott-Insulator Transition in a Two- Dimensional Atomic Bose Gas," Phys. Rev. Lett. 98, 080404 (2007), cond-mat/0606216.
  12. L. Wang, K. S. D. Beach, and A. W. Sandvik, "High-precision finite-size scaling analysis of the quantum-critical point of S = 1/2 Heisenberg antiferromagnetic bilayers," Phys. Rev. B 73, 014431 (2006), cond-mat/0509747.
  13. M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, "Ground-state phase diagram of quantum Heisenberg antiferromagnets on the anisotropic dimerized square lattice," Phys. Rev. B 65, 014407 (2002), cond-mat/0107115.
  14. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, "Deconfined quan- tum critical points," Science 303, 1490 (2004), cond-mat/0311326 ; T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, "Quantum criticality beyond the Landau- Ginzburg-Wilson paradigm," Phys. Rev. B 70, 144407 (2004), cond-mat/0312617.
  15. A. W. Sandvik, "Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions," cond-mat/0611343.
  16. O. I. Motrunich and A. Vishwanath, "Emergent photons and new transitions in the O(3) sigma model with hedgehog suppression," Phys. Rev. B 70, 075104 (2004), cond-mat/0311222.
  17. M. P. A. Fisher, G. Grinstein, and S. M. Girvin, "Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition," Phys. Rev. Lett. 64, 587 (1990).
  18. M. P. A. Fisher, "Quantum phase transitions in disordered two-dimensional superconductors," Phys. Rev. Lett. 65, 923 (1990).
  19. X.-G. Wen and A. Zee, "Universal conductance at the superconductor-insulator transition," Int. J. Mod. Phys. B 4, 437 (1990).
  20. M. E. Peskin, "Mandelstam-'t Hooft duality in abelian lattice models," Annals of Physics, 113, 122 (1978).
  21. C. Dasgupta and B. I. Halperin, "Phase Transition in a Lattice Model of Superconductivity," Phys. Rev. Lett. 47, 1556 (1981).
  22. M. P. A. Fisher and D. H. Lee, "Correspondence between two-dimensional bosons and a bulk superconductor in a magnetic field," Phys. Rev. B 39, 2756 (1989).
  23. D.-H. Lee and M. P. A. Fisher, "Anyon Superconductivity and the Fractional Quantum Hall Effect", Phys. Rev. Lett. 63, 1442 (1989).
  24. E. Fradkin and S. Kivelson, "Modular invariance, self-duality and the phase transition between quantum Hall plateaus," Nucl. Phys. B 474, 543 (1996), cond-mat/9603156.
  25. L. P. Pryadko and S.-C. Zhang, "Duality and universality for the Chern-Simons bosons", Phys. Rev. B 54, 4953 (1996), cond-mat/9511140.
  26. E. Shimshoni, S. L. Sondhi, and D. Shahar, "Duality near quantum Hall transitions," Phys. Rev. B 55, 13730 (1997), cond-mat/9610102.
  27. C. P. Burgess and B. P. Dolan, "Particle-vortex duality and the modular group: Applica- tions to the quantum Hall effect and other 2-D systems," Phys. Rev. B 63, 155309 (2001), hep-th/0010246.
  28. E. Witten, "SL(2,Z) action on three-dimensional conformal field theories with Abelian sym- metry," hep-th/0307041.
  29. K. Damle and S. Sachdev, "Non-zero temperature transport near quantum critical points," Phys. Rev. B 56, 8714 (1997), cond-mat/9705206.
  30. S. Sachdev, "Non-zero temperature transport near fractional quantum Hall critical points," Phys. Rev. B 57, 7157 (1998), cond-mat/9709243.
  31. S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge (1999).
  32. S. Sachdev and J. Ye, "Universal quantum critical dynamics of two-dimensional antiferromag- nets," Phys. Rev. Lett. 69, 2411 (1992), cond-mat/9204001.
  33. S. Hod, "Universal Bound on Dynamical Relaxation Times and Black-Hole Quasinormal Ring- ing," gr-qc/0611004.
  34. A. V. Chubukov, S. Sachdev, and J. Ye, "Theory of two-dimensional quantum antiferromag- nets with a nearly-critical ground state," Phys. Rev. B 49, 11919 (1994), cond-mat/9304046.
  35. J. Šmakov and E. Sørensen, "Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition," Phys. Rev. Lett. 95, 180603 (2005), cond-mat/0509671.
  36. A. G. Green and S. L. Sondhi, "Nonlinear Quantum Critical Transport and the Schwinger Mechanism for a Superfluid-Mott-Insulator Transition of Bosons," Phys. Rev. Lett. 95, 267001 (2005), cond-mat/0501758.
  37. A. G. Green, J. E. Moore, S. L. Sondhi, and A. Vishwanath, "Current fluctuations near to the 2D superconductor-insulator quantum critical point," cond-mat/0605615.
  38. M. J. Bhaseen, A. G. Green, and S. L. Sondhi, "Magnetothermoelectric Response at a Superfluid-Mott Insulator Transition," cond-mat/0610687.
  39. K. A. Intriligator and N. Seiberg, 'Mirror symmetry in three dimensional gauge theories," Phys. Lett. B 387, 513 (1996), hep-th/9607207.
  40. O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg and M. J. Strassler, "Aspects of N = 2 supersymmetric gauge theories in three dimensions," Nucl. Phys. B 499, 67 (1997), hep-th/9703110.
  41. A. Kapustin and M. J. Strassler, "On mirror symmetry in three dimensional Abelian gauge theories," JHEP 9904, 021 (1999), hep-th/9902033.
  42. L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, "Putting competing orders in their place near the Mott transition," Phys. Rev. B 71, 144508 (2005), cond-mat/0408329.
  43. N. Seiberg, "Notes on theories with 16 supercharges," Nucl. Phys. Proc. Suppl. 67, 158 (1998), hep-th/9705117.
  44. S. Sethi and L. Susskind, "Rotational invariance in the M(atrix) formulation of type IIB theory," Phys. Lett. B 400, 265 (1997), hep-th/9702101.
  45. N. Itzhaki, J. M. Maldacena, J. Sonnenschein and S. Yankielowicz, "Supergravity and the large N limit of theories with sixteen supercharges," Phys. Rev. D 58, 046004 (1998), hep-th/9802042.
  46. See section 6.1 of the review O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, "Large N field theories, string theory and gravity," Phys. Rept. 323, 183 (2000), hep-th/9905111.
  47. D. T. Son and A. O. Starinets, "Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications," JHEP 0209, 042 (2002), hep-th/0205051.
  48. C. P. Herzog and D. T. Son, "Schwinger-Keldysh propagators from AdS/CFT correspon- dence," JHEP 0303, 046 (2003), hep-th/0212072.
  49. C. P. Herzog, "The hydrodynamics of M-theory", JHEP 0212, 026 (2002), hep-th/0210126.
  50. G. Policastro, D. T. Son and A. O. Starinets, "From AdS/CFT correspondence to hydrody- namics," JHEP 0209, 043 (2002), hep-th/0205052.
  51. P. Kovtun, D. T. Son and A. O. Starinets, "Holography and hydrodynamics: Diffusion on stretched horizons," JHEP 0310, 064 (2003), hep-th/0309213.
  52. A. Buchel, "N = 2 * hydrodynamics," Nucl. Phys. B 708, 451 (2005), hep-th/0406200.
  53. P. Benincasa and A. Buchel, "Hydrodynamics of Sakai-Sugimoto model in the quenched ap- proximation," Phys. Lett. B 640, 108 (2006), hep-th/0605076.
  54. D. Mateos, R. C. Myers and R. M. Thomson, "Holographic viscosity of fundamental matter," hep-th/0610184.
  55. S. Caron-Huot, P. Kovtun, G. D. Moore, A. Starinets and L. G. Yaffe, "Photon and dilepton production in supersymmetric Yang-Mills plasma," JHEP 0612, 015 (2006), hep-th/0607237.
  56. S. Sethi, "A relation between N = 8 gauge theories in three dimensions," JHEP 9811, 003 (1998), hep-th/9809162.
  57. R. G. Leigh and A. C. Petkou, "SL(2,Z) action on three-dimensional CFTs and holography," JHEP 0312, 020 (2003), hep-th/0309177.
  58. E. Babaev, "Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model ," Phys. Rev. Lett. 89, 067001 (2002), cond-mat/0111192.
  59. A. M. Polyakov, "Compact gauge fields and the infrared catastrophe," Phys. Lett. B 59, 82 (1975).
  60. S. Sachdev, "Quantum phases and phase transitions of Mott insulators," in Quantum mag- netism, U. Schollwock, J. Richter, D. J. J. Farnell and R. A. Bishop eds, Lecture Notes in Physics 645, Springer, Berlin (2004), cond-mat/0401041.
  61. A. Kuklov, N. Prokof'ev, B. Svistunov, and M. Troyer, "Deconfined criticality, runaway flow in the two-component scalar electrodynamics and weak first-order superfluid-solid transitions," Annals of Physics 321, 1602 (2006), cond-mat/0602466.
  62. E. D'Hoker and D. Z. Freedman, "Supersymmetric gauge theories and the AdS/CFT cor- respondence," in Strings, Branes And Extra Dimensions: Tasi 2001 , S. S. Gubser and J. D. Lykken Eds., World Scientific, Singapore (2004), hep-th/0201253.
  63. E. Witten, "Anti-de Sitter space, thermal phase transition, and confinement in gauge theories," Adv. Theor. Math. Phys. 2, 505 (1998), hep-th/9803131.
  64. C. P. Herzog, "A holographic prediction of the deconfinement temperature," Phys. Rev. Lett. 98, 091601 (2007) hep-th/0608151.
  65. G. T. Horowitz and A. Strominger, "Black strings and P-branes," Nucl. Phys. B 360, 197 (1991).
  66. M. J. Duff and J. T. Liu, "Anti-de Sitter Black Holes in Gauged N = 8 Supergravity," Nucl. Phys. B 554, 237 (1999), hep-th/9901149.
  67. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Ben- jamin/Cummings, Reading MA (1975).
  68. E. Cremmer and B. Julia, "The SO(8) Supergravity," Nucl. Phys. B 159, 141 (1979).
  69. B. de Wit and H. Nicolai, "N = 8 Supergravity," Nucl. Phys. B 208, 323 (1982).
  70. M. J. Duff and C. N. Pope, "Kaluza-Klein Supergravity And The Seven Sphere," Super- symmetry and Supergravity 82, Proc. trieste Conf. ed S. Ferrara, J. G. Taylor, and P. van Nieuwenhuizen, pp 183-228, World Scientific (Singapore).
  71. P. G. O. Freund, Introduction to Supersymmetry, Chapters 23-26, Cambridge University Press, Cambridge (1986).
  72. C. M. Hull and P. K. Townsend, "Unity of superstring dualities," Nucl. Phys. B 438, 109 (1995), hep-th/9410167.
  73. X. G. Wen and Y.-S. Wu, "Transitions between the quantum Hall states and insulators induced by periodic potentials," Phys. Rev. Lett. 70, 1501 (1993).
  74. T. Giamarchi, "Resistivity of a one-dimensional interacting quantum fluid," Phys. Rev. B 46, 342 (1992).
  75. D. Berenstein, C. P. Herzog and I. R. Klebanov, "Baryon spectra and AdS/CFT correspon- dence," JHEP 0206, 047 (2002), hep-th/0202150.
  76. M. J. Duff, C. N. Pope and N. P. Warner, "Cosmological And Coupling Constants In Kaluza- Klein Supergravity," Phys. Lett. B 130, 254 (1983).
  77. P. Kovtun, D. T. Son and A. O. Starinets, "Viscosity in strongly interacting quantum field theories from black hole physics," Phys. Rev. Lett. 94, 111601 (2005), hep-th/0405231.
  78. C. P. Herzog, "Energy loss of heavy quarks from asymptotically AdS geometries," JHEP 0609, 032 (2006), hep-th/0605191.