Academia.eduAcademia.edu

Outline

Dual Gravitons in AdS 4 /CFT 3 and the Holographic Cotton Tensor

Abstract

We argue that gravity theories in AdS 4 are holographically dual to either of two threedimensional CFT's: the usual Dirichlet CFT 1 where the fixed graviton acts as a source for the stress-energy tensor, and a dual CFT 2 with a fixed dual graviton which acts as a source for a dual stress-energy tensor. The dual stress-energy tensor is shown to be the Cotton tensor of the Dirichlet CFT. The two CFT's are related by a Legendre transformation generated by a gravitational Chern-Simons coupling. This duality is a gravitational version of electric-magnetic duality valid at any radius r, where the renormalized stress-energy tensor is the electric field and the Cotton tensor is the magnetic field. Generic Robin boundary conditions lead to CFT's coupled to Cotton gravity or topologically massive gravity. Interaction terms with CFT 1 lead to a non-zero vev of the stress-energy tensor in CFT 2 coupled to gravity even after the source is removed. We point out that the dual graviton also exists beyond the linearized approximation, and spell out some of the details of the non-linear construction.

References (34)

  1. E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253 [arXiv:hep-th/9802150].
  2. S. de Haro, S. N. Solodukhin and K. Skenderis, "Holographic reconstruction of space- time and renormalization in the AdS/CFT correspondence," Commun. Math. Phys. 217 (2001) 595 [arXiv:hep-th/0002230].
  3. S. de Haro, K. Skenderis and S. N. Solodukhin, "Gravity in warped compactifications and the holographic stress tensor," Class. Quant. Grav. 18 (2001) 3171 [arXiv:hep- th/0011230].
  4. A. Ishibashi and R. M. Wald, "Dynamics in non-globally hyperbolic static space- times. III: anti-de Sitter spacetime," Class. Quant. Grav. 21 (2004) 2981 [arXiv:hep- th/0402184].
  5. E. Witten, "Multi-trace operators, boundary conditions, and AdS/CFT correspon- dence," arXiv:hep-th/0112258.
  6. M. Berkooz, A. Sever and A. Shomer, "Double-trace deformations, boundary condi- tions and spacetime singularities," JHEP 0205 (2002) 034 [arXiv:hep-th/0112264].
  7. S. de Haro and A. C. Petkou, "Holographic Aspects of Electric-Magnetic Dualities," J. Phys. Conf. Ser. 110 (2008) 102003 [arXiv:0710.0965 [hep-th]].
  8. S. de Haro and A. Petkou, to appear.
  9. G. Compere and D. Marolf, "Setting the boundary free in AdS/CFT," arXiv:0805.1902 [hep-th].
  10. D. S. Mansi, A. C. Petkou and G. Tagliabue, "Gravity in the 3+1-Split Formalism I: Holography as an Initial Value Problem," arXiv:0808.1212 [hep-th]. "Gravity in the 3+1-Split Formalism II: Self-Duality and the Emergence of the Gravitational Chern- Simons in the Boundary," arXiv:0808.1213 [hep-th].
  11. S. de Haro and P. Gao, "Electric -magnetic duality and deformations of three- dimensional CFT's," arXiv:hep-th/0701144.
  12. G. E. Arutyunov and S. A. Frolov, "On the origin of supergravity boundary terms in the AdS/CFT correspondence," Nucl. Phys. B 544 (1999) 576 [arXiv:hep-th/9806216].
  13. S. de Haro, "Instantons and Chern-Simons Terms in AdS 4 /CFT 3 : Grav- ity on the Brane?", QGT08 conference, Kolkata, India, January 9, 2008, http://www.phys.uu.nl/˜haro/EPS/EPS.pdf; "Bubbles of True Vacuum and Duality in M-theory", EPS conference 2007, Manchester, July 21 2007, http://www.phys.uu.nl/˜haro/EPS/EPS.pdf .
  14. S. de Haro and A. C. Petkou, "Instantons and conformal holography," JHEP 0612 (2006) 076 [arXiv:hep-th/0606276].
  15. S. de Haro, I. Papadimitriou and A. C. Petkou, "Conformally coupled scalars, instan- tons and vacuum instability in AdS(4)," Phys. Rev. Lett. 98 (2007) 231601 [arXiv:hep- th/0611315].
  16. R. G. Leigh and A. C. Petkou, "Gravitational Duality Transformations on (A)dS4," JHEP 0711 (2007) 079 [arXiv:0704.0531 [hep-th]].
  17. I. Papadimitriou, "Non-supersymmetric membrane flows from fake supergravity and multi-trace deformations," JHEP 0702 (2007) 008 [arXiv:hep-th/0606038].
  18. K. Skenderis and B. C. van Rees, "Real-time gauge/gravity duality," arXiv:0805.0150 [hep-th].
  19. E. Witten, "SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry," arXiv:hep-th/0307041.
  20. W. Li, W. Song and A. Strominger, "Chiral Gravity in Three Dimensions," JHEP 0804 (2008) 082 [arXiv:0801.4566 [hep-th]].
  21. R. G. Leigh and A. C. Petkou, "SL(2,Z) action on three-dimensional CFTs and holography," JHEP 0312 (2003) 020 [arXiv:hep-th/0309177].
  22. S. Carlip, S. Deser, A. Waldron and D. K. Wise, "Cosmological Topologically Massive Gravitons and Photons," arXiv:0803.3998 [hep-th].
  23. D. Grumiller, R. Jackiw and N. Johansson, "Canonical analysis of cosmological topo- logically massive gravity at the chiral point," arXiv:0806.4185 [hep-th].
  24. P. C. West, "E(11) and M theory," Class. Quant. Grav. 18 (2001) 4443 [arXiv:hep- th/0104081].
  25. E. Witten, "Quantum field theory and the Jones polynomial," Commun. Math. Phys. 121 (1989) 351.
  26. J. Bagger and N. Lambert, "Comments On Multiple M2-branes," JHEP 0802 (2008) 105 [arXiv:0712.3738 [hep-th]]. "Gauge Symmetry and Supersymmetry of Multiple M2-Branes," Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955 [hep-th]]. "Modeling multiple M2's," Phys. Rev. D 75 (2007) 045020 [arXiv:hep-th/0611108].
  27. O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, "N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals," arXiv:0806.1218 [hep-th].
  28. B. Julia, J. Levie and S. Ray, "Gravitational duality near de Sitter space," JHEP 0511 (2005) 025 [arXiv:hep-th/0507262].
  29. C. P. Herzog, P. Kovtun, S. Sachdev and D. T. Son, "Quantum critical transport, duality, and M-theory," Phys. Rev. D 75 (2007) 085020 [arXiv:hep-th/0701036].
  30. C. P. Burgess and B. P. Dolan, "Particle-vortex duality and the modular group: Ap- plications to the quantum Hall effect and other 2-D systems," arXiv:hep-th/0010246.
  31. C. P. Burgess and B. P. Dolan, "The Quantum Hall Effect in Graphene: Emer- gent Modular Symmetry and the Semi-circle Law," Phys. Rev. B 76 (2007) 113406 [arXiv:cond-mat/0612269].
  32. S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, "Building an AdS/CFT supercon- ductor," arXiv:0803.3295 [hep-th].
  33. E. W. Mielke and P. Baekler, "Topological Gauge Model Of Gravity With Torsion," Phys. Lett. A 156 (1991) 399.
  34. S. Deser, R. Jackiw and S. Templeton, "Topologically massive gauge theories," Annals Phys. 140 (1982) 372 [Erratum-ibid. 185 (1988 APNYA,281,409-449.2000) 406.1988 APNYA,281,409].