Academia.eduAcademia.edu

Outline

Instantons and conformal holography

2006, Journal of High Energy Physics

https://doi.org/10.1088/1126-6708/2006/12/076

Abstract

We study a subsector of the AdS_4/CFT_3 correspondence where a class of solutions in the bulk and on the boundary can be explicitly compared. The bulk gravitational theory contains a conformally coupled scalar field with a Phi^4 potential, and is holographically related to a massless scalar with a Phi^6 interaction in three dimensions. We consider the scalar sector of the bulk theory and match bulk and boundary classical solutions of the equations of motion. Of particular interest is the matching of the bulk and the boundary instanton solutions which underlies the relationship between bulk and boundary vacua with broken conformal invariance. Using a form of radial quantization we show that quantum states in the bulk correspond to multiply-occupied single particle quantum states in the boundary theory. This allows us to explicitly identify the boundary composite operator which is dual to the bulk scalar, at the free theory level as well as in the instanton vacuum. We conclude with a discussion of possible implications of our results.

References (32)

  1. J. M. Maldacena, "The large N limit of superconformal field theories and supergravity," Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [arXiv:hep- th/9711200].
  2. E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253 [arXiv:hep-th/9802150].
  3. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, "Large N field the- ories, string theory and gravity," Phys. Rept. 323 (2000) 183 [arXiv:hep-th/9905111].
  4. X. Bekaert, S. Cnockaert, C. Iazeolla and M. A. Vasiliev, "Nonlinear higher spin theories in various dimensions," arXiv:hep-th/0503128.
  5. J. H. Schwarz, "Superconformal Chern-Simons theories," JHEP 0411 (2004) 078 [arXiv:hep-th/0411077].
  6. T. Hertog and G. T. Horowitz, "Holographic description of AdS cosmologies," JHEP 0504 (2005) 005 [arXiv:hep-th/0503071].
  7. S. Fubini, "A New Approach To Conformal Invariant Field Theories," Nuovo Cim. A 34 (1976) 521.
  8. A. P. Bukhvostov and L. N. Lipatov, "Instanton -Anti-Instanton Interaction In The O(3) Nonlinear Sigma Model And An Exactly Soluble Fermion Theory," Nucl. Phys. B 180 (1981) 116 [Pisma Zh. Eksp. Teor. Fiz. 31 (1980) 138].
  9. S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, "Multitrace deformations of vector and adjoint theories and their holographic duals," JHEP 0602 (2006) 006 [arXiv:hep- th/0511061].
  10. S. de Haro, S. N. Solodukhin and K. Skenderis, "Holographic reconstruction of space- time and renormalization in the AdS/CFT correspondence," Commun. Math. Phys. 217, 595 (2001) [arXiv:hep-th/0002230].
  11. K. Skenderis, "Lecture notes on holographic renormalization," Class. Quant. Grav. 19 (2002) 5849 [arXiv:hep-th/0209067].
  12. I. R. Klebanov and E. Witten, "AdS/CFT correspondence and symmetry breaking," Nucl. Phys. B 556 (1999) 89 [arXiv:hep-th/9905104].
  13. W. A. Bardeen, M. Moshe and M. Bander, "Spontaneous Breaking Of Scale Invariance And The Ultraviolet Fixed Point In O(N) Symmetric (Phi**6 In Three-Dimensions) Theory," Phys. Rev. Lett. 52 (1984) 1188.
  14. S. J. Avis, C. J. Isham and D. Storey, "Quantum Field Theory In Anti-De Sitter Space-Time," Phys. Rev. D 18, 3565 (1978).
  15. P. Breitenlohner and D. Z. Freedman, "Stability In Gauged Extended Supergravity," Annals Phys. 144 (1982) 249.
  16. V. Balasubramanian, P. Kraus and A. E. Lawrence, "Bulk vs. boundary dynamics in anti-de Sitter spacetime," Phys. Rev. D 59 (1999) 046003 [arXiv:hep-th/9805171].
  17. S. Fubini, A. J. Hanson and R. Jackiw, "New Approach To Field Theory," Phys. Rev. D 7 (1973) 1732.
  18. I. G. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products", 6th edition, 2000
  19. V. Balasubramanian, P. Kraus, A. E. Lawrence and S. P. Trivedi, "Holographic probes of anti-de Sitter space-times," Phys. Rev. D 59 (1999) 104021 [arXiv:hep-th/9808017].
  20. T. Banks, M. R. Douglas, G. T. Horowitz and E. J. Martinec, "AdS dynamics from conformal field theory," arXiv:hep-th/9808016.
  21. K. Koller, "The Significance Of Conformal Inversion In Quantum Field Theory," DESY 74/8
  22. F. Loran, "Nonlinear Laplace Equation, De Sitter Vacua, And Information Geometry," Phys. Rev. D 71 (2005) 126003.
  23. S. de Haro, I. Papadimitriou and A. C. Petkou, "Conformally Coupled Scalars, In- stantons and Vacuum Instability in AdS 4 ," arXiv:hep-th/0611315.
  24. E. Sezgin and P. Sundell, "An exact solution of 4D higher-spin gauge theory," arXiv:hep-th/0508158.
  25. J. M. Maldacena and L. Maoz, "Wormholes in AdS," JHEP 0402 (2004) 053 [arXiv:hep-th/0401024].
  26. R. G. Leigh and A. C. Petkou, "SL(2,Z) action on three-dimensional CFTs and holog- raphy," JHEP 0312 (2003) 020 [arXiv:hep-th/0309177].
  27. S. de Haro and P. Gao, to appear.
  28. T. Hertog and K. Maeda, "Black holes with scalar hair and asymptotics in N = 8 supergravity," JHEP 0407 (2004) 051 [arXiv:hep-th/0404261].
  29. I. Papadimitriou, "Non-supersymmetric membrane flows from fake supergravity and multi-trace deformations," arXiv:hep-th/0606038.
  30. B. Freivogel, Y. Sekino, L. Susskind and C. P. Yeh, "A Holographic Framework for Eternal Inflation," arXiv:hep-th/0606204.
  31. A. Messiah, "Quantum Mechanics", North-Holland, 1961
  32. G. E. Andrews, R. Askey and R. Roy, "Special functions", Cambridge University Press, 1999.