On Frobenius exact symmetric tensor categories
2021
Abstract
A fundamental theorem of P. Deligne (2002) states that a preTannakian category over an algebraically closed field of characteristic zero admits a fiber functor to the category of supervector spaces (i.e., is the representation category of an affine proalgebraic supergroup) if and only if it has moderate growth (i.e., the lengths of tensor powers of an object grow at most exponentially). In this paper we prove a characteristic p version of this theorem. Namely we show that a pre-Tannakian category over an algebraically closed field of characteristic p > 0 admits a fiber functor into the Verlinde category Verp (i.e., is the representation category of an affine group scheme in Verp) if and only if it has moderate growth and is Frobenius exact. This implies that Frobenius exact pre-Tannakian categories of moderate growth admit a well-behaved notion of Frobenius-Perron dimension. It follows that any semisimple pre-Tannakian category of moderate growth has a fiber functor to Verp (so i...
References (28)
- L. Archer, Hall algebras and Green rings. PhD thesis, University of Oxford.
- D. Benson, Commutative Banach algebras and modular representation theory, 2020, arXiv: https://arxiv.org/pdf/2008.13155.pdf .
- D. Benson, Some conjectures and their consequences for tensor products of modules over a finite p-group, J. Algebra, Volume 558, 15 September 2020, p. 24-42.
- D. Benson, P. Etingof: Symmetric tensor categories in characteristic 2. Adv. Math. 351 (2019), 967-999.
- D. Benson, P. Etingof, and V. Ostrik, New incompressible symmetric tensor categories in positive characteristic, 2020, arXiv: https://arxiv.org/pdf/2003.10499.pdf .
- D. Benson and P. Symonds, The non-projective part of the tensor powers of a module, Journal of the London Mathematical Society, v. 101, p. 823-856, 2020.
- A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math. 64 (1987), no. 2, 118-175.
- J. Brundan, A. Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), no. 1, 75-106.
- K. Coulembier Tannakian categories in positive characteristic. Duke Math. Journal, 169 (2020), no. 16, p. 3167-3219.
- K. Coulembier: Monoidal abelian envelopes. To appear in Compositio Mathematica. arXiv:2003.10105.
- K. Coulembier, P. Etingof, V. Ostrik, B. Pauwels: Monoidal abelian envelopes with a quotient property, 2021, arXiv: https://arxiv.org/pdf/2103.00094.pdf.
- C. de Concini, C. Procesi: A characteristic free approach to invariant theory, Adv. Math. 21 (1976), no. 3, 330-354.
- P. Deligne: Catégories tannakiennes. The Grothendieck Festschrift, Vol. II, 111-195, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990.
- P. Deligne: Catégories tensorielles, Mosc. Math. J., 2 (2002), no. 2, 227-248.
- DG] M. Demazure, P. Gabriel: Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. North-Holland Publishing Co., Amsterdam, 1970.
- E. J. Dubuc, R. Street: A construction of bifiltered 2-colimits of categories, Cah. Topol. Géom. Différ. Catég., 47 (2006), no. 2, 83-106.
- P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories. Mathematical Surveys and Monographs, 205. American Mathematical Society, Providence, RI, 2015.
- P. Etingof, N. Harman, V. Ostrik, p-adic dimensions in symmetric tensor categories in characteristic p, Quantum Topol., 9 (2018), no. 1, 119-140.
- P. Etingof, V. Ostrik, On the Frobenius functor for symmetric tensor categories in positive characteristic, J. für die reine und angewandte Mathematik, 773 (2021), p. 165-198.
- P. Etingof, V. Ostrik, On semisimplification of tensor categories, 2018, arXiv: https://arxiv.org/pdf/1801.04409.pdf.
- P. Etingof, V. Ostrik, S. Venkatesh, Computations in symmetric fusion categories in characteristic p, 2017, Int. Math. Res. Not., p. 468-489.
- E. M. Friedlander, J. Pevtsova, A. Suslin, Generic and maximal Jordan types, Invent. Math., 168, (2007), no. 3, p. 485-522.
- G.D. James: The representation theory of the symmetric groups. Lecture Notes in Math- ematics, 682. Springer, Berlin, 1978.
- N. Harman: Deligne categories as limits in rank and characteristic. arXiv:1601.03426.
- D. Gaitsgory, The notion of category over an algebraic stack, 2005, arXiv: https://arxiv.org/pdf/math/0507192.pdf .
- M. Nagata, Complete reducibility of rational representations of a matrix group, Kyoto Journal of Mathematics, v.1 (1961), p.87-99.
- V. Ostrik, On symmetric fusion categories in positive characteristic, Selecta Mathematica, v.26, 2020, arXiv: https://arxiv.org/pdf/1503.01492.pdf
- S. Venkatesh, Harish-Chandra pairs in the Verlinde category in positive characteristic, 2019, arXiv: https://arxiv.org/pdf/1909.11240.pdf.