Academia.eduAcademia.edu

Outline

Nanotechnology in Textile Finishing: Recent Developments

2021, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications,Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-11155-7_55-1

Abstract

Nanotechnology is one of the prominent areas for research studies in developing super functional materials like fabrics with self-cleaning, UV-protection, antimicrobial, antistatic, soil and stain repellent, water repellent, and fire retardant. The chapter commences with a preface to the classification of nanofinishing on textiles, and then on to the different techniques for application, including the nanoparticles and nanolayers. Later it explains the production of various nanofinishing, namely Lotus effect/self-cleaning textile materials, nano photocatalysts, water repellent/ waterproof fabrics, that are designed to reduce the surface energy through nanostructures and nano surface. The UV-protective textiles by application of TiO2 and ZnO as nanoparticles, durable antimicrobial derivatives from nanosilver, and fire retardant from various nanostructured chemicals are addressed in this chapter. It is irony that nanofinishing in textiles has made a big revolution in the world market for technical textiles, for its potentiality in creating high performance and specialty clothing. The current and future innovations are focused on sustainability and highperformance materials for which nanotechnology is the solution.

Key takeaways
sparkles

AI

  1. Nanotechnology revolutionizes textile finishing, enabling multifunctional properties like self-cleaning and UV protection.
  2. Various techniques such as sol-gel and electroless plating enhance textile durability and functionality.
  3. Nanoparticles like TiO2 and ZnO offer antimicrobial, UV-blocking, and self-cleaning capabilities in textiles.
  4. Sustainability is central to innovations in textile nanofinishing, reducing environmental impact and resource use.
  5. The text discusses advancements in nanotechnology that improve fabric properties for technical applications.

References (80)

  1. Richard (2009) "Plenty of room" revisited. Nat Nanotechnol 4:781-781. https://doi.org/10. 1038/nnano.2009.356
  2. Periyasamy AP (2006) Nano technology for achieving high functional textile finishing. Text Mag 48:28-34
  3. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029
  4. Yang K, Periyasamy AP, Venkataraman M et al (2020) Resistance against penetration of electromagnetic radiation for ultra-light Cu/Ni-coated polyester fibrous materials. Polymers (Basel) 12:2029. https://doi.org/10.3390/polym12092029
  5. Periyasamy AP, Venkataraman M, Kremenakova D et al (2020) Progress in sol-gel technology for the coatings of fabrics. Materials (Basel) 13:1838. https://doi.org/10.3390/ma13081838
  6. Periyasamy AP, Yang K, Xiong X et al (2020) Effect of silanization on copper coated milife fabric with improved EMI shielding effectiveness. Mater Chem Phys 239:122008. https://doi. org/10.1016/j.matchemphys.2019.122008
  7. Periyasamy AP, Yang K, Xiong X et al (2019) Influence of EMI shielding on silane-coated conductive fabric. In: Textile bioengineering and informatics symposium proceedings 2019 - 12th textile bioengineering and informatics symposium, TBIS 2019, pp 67-71
  8. Periyasamy AP, Vikova M, Vik M (2020) Spectral and physical properties organo-silica coated photochromic poly-ethylene terephthalate (PET) fabrics. J Text Inst 111:808-820. https://doi. org/10.1080/00405000.2019.1663633
  9. hsin Huang H, Orler B, Wilkes GL (1987) Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules. https://doi.org/10. 1021/ma00172a026
  10. Kwon DH, Huh HK, Lee SJ (2014) Wettability and impact dynamics of water droplets on rice (Oryza sativa L.) leaves. Exp Fluids 55:1691. https://doi.org/10.1007/s00348-014-1691-y
  11. Mayser MJ, Bohn HF, Reker M, Barthlott W (2014) Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J Nanotechnol 5:812-821. https://doi.org/10.3762/bjnano.5.93
  12. Bixler GD, Bhushan B (2012) Bioinspired rice leaf and butterfly wing surface structures com- bining shark skin and lotus effects. Soft Matter 8:11271. https://doi.org/10.1039/c2sm26655e
  13. Gao X, Yan X, Yao X et al (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213-2217. https:// doi.org/10.1002/adma.200601946
  14. Zhang M, Feng S, Wang L, Zheng Y (2016) Lotus effect in wetting and self-cleaning. Biotribology 5:31-43. https://doi.org/10.1016/j.biotri.2015.08.002
  15. Roy S, Zhai L, Kim JW et al (2020) A novel approach of developing sustainable cellulose coating for self-cleaning-healing fabric. Prog Org Coat 140:105500. https://doi.org/10.1016/j. porgcoat.2019.105500
  16. Jiang C, Liu W, Yang M et al (2018) Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids Surfaces A Physicochem Eng Asp 559:235-242. https://doi.org/10.1016/j.colsurfa.2018.09.048
  17. Xin JH, Daoud WA, Kong YY (2004) A new approach to UV-blocking treatment for cotton fabrics. Text Res J 74:97-100. https://doi.org/10.1177/004051750407400202
  18. Daoud WA, Leung SK, Tung WS et al (2008) Self-cleaning keratins. Chem Mater 20:1242- 1244. https://doi.org/10.1021/cm702661k
  19. Bozzi A, Yuranova T, Kiwi J (2005) Self-cleaning of wool-polyamide and polyester textiles by TiO 2 -rutile modification under daylight irradiation at ambient temperature. J Photochem Photo- biol A Chem 172:27-34. https://doi.org/10.1016/j.jphotochem.2004.11.010
  20. Pakdel E, Daoud WA (2013) Self-cleaning cotton functionalized with TiO 2 /SiO 2 : focus on the role of silica. J Colloid Interface Sci 401:1-7. https://doi.org/10.1016/j.jcis.2013.03.016
  21. Pakdel E, Daoud WA, Wang X (2015) Assimilating the photo-induced functions of TiO 2 -based compounds in textiles: emphasis on the sol-gel process. Text Res J 85:1404-1428. https://doi. org/10.1177/0040517514551462
  22. Pakdel E, Daoud WA, Sun L, Wang X (2014) Visible and UV functionality of TiO 2 ternary nanocomposites on cotton. Appl Surf Sci 321:447-456. https://doi.org/10.1016/j.apsusc.2014. 10.018
  23. Zahid M, Papadopoulou EL, Suarato G et al (2018) Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO 2 nanoparticles. ACS Appl Bio Mater 1:1154-1164. https://doi.org/10.1021/acsabm.8b00357
  24. Gaminian H, Montazer M (2015) Enhanced self-cleaning properties on polyester fabric under visible light through single-step synthesis of cuprous oxide doped Nano-TiO 2 . Photochem Photobiol 91:1078-1087. https://doi.org/10.1111/php.12478
  25. Afzal S, Daoud WA, Langford SJ (2013) Photostable self-cleaning cotton by a copper(II) porphyrin/TiO 2 visible-light photocatalytic system. ACS Appl Mater Interfaces 5:4753-4759. https://doi.org/10.1021/am400002k
  26. Pakdel E, Daoud WA, Wang X (2013) Self-cleaning and superhydrophilic wool by TiO 2 /SiO 2 nanocomposite. Appl Surf Sci 275:397-402. https://doi.org/10.1016/j.apsusc.2012.10.141
  27. Zhao Q, Wu LYL, Huang H, Liu Y (2016) Ambient-curable superhydrophobic fabric coating prepared by water-based non-fluorinated formulation. Mater Des. https://doi.org/10.1016/j. matdes.2015.12.054
  28. Zhang J, Li B, Wu L, Wang A (2013) Facile preparation of durable and robust super- hydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem Commun. https://doi.org/10.1039/c3cc43238f
  29. Onar N, Mete G (2016) Development of water repellent cotton fabric with application of ZnO, Al2O3, TiO 2 and ZrO 2 nanoparticles modified with ormosils. Tekst ve Konfeksiyon
  30. Zhou H, Wang H, Niu H et al (2012) Fluoroalkyl Silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409-2412. https://doi.org/10.1002/adma.201200184
  31. Wu M, Ma B, Pan T et al (2016) Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Adv Funct Mater 26:569-576. https://doi.org/10.1002/adfm.201504197
  32. Sas I, Gorga RE, Joines JA, Thoney KA (2012) Literature review on superhydrophobic self- cleaning surfaces produced by electrospinning. J Polym Sci Part B Polym Phys 50:824-845. https://doi.org/10.1002/polb.23070
  33. Meng L-Y, Han S, Jiang N, Meng W (2014) Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers. Mater Chem Phys 148:798-802. https://doi.org/10.1016/j. matchemphys.2014.08.051
  34. Zimmermann J, Reifler FA, Fortunato G et al (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18:3662-3669. https://doi.org/10.1002/ adfm.200800755
  35. Lei S, Shi Z, Ou J et al (2017) Durable superhydrophobic cotton fabric for oil/water separation. Colloids Surf A Physicochem Eng Asp 533:249-254. https://doi.org/10.1016/j.colsurfa.2017. 08.012
  36. Shang Q, Liu C, Zhou Y (2018) One-pot fabrication of robust hydrophobia and superoleophilic cotton fabrics for effective oil-water separation. J Coat Technol Res 15:65-75. https://doi.org/ 10.1007/s11998-017-9947-0
  37. El-Shafei A, Elshemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym. https://doi.org/10. 1016/j.carbpol.2014.11.007
  38. Przybylak M, Maciejewski H, Dutkiewicz A (2016) Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2016.06.094
  39. Xue CH, Jia ST, Chen HZ, Wang M (2008) Superhydrophobic cotton fabrics prepared by sol- gel coating of TiO 2 and surface hydrophobization. Sci Technol Adv Mater. https://doi.org/10. 1088/1468-6996/9/3/035001
  40. Fouda A, EL-Din Hassan S, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252-261. https://doi.org/10.1016/j.micpath.2018.09.030
  41. Noorian SA, Hemmatinejad N, Navarro JAR (2020) Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int J Biol Macromol 154:1215-1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276
  42. Nasouri K, Shoushtari AM, Mirzaei J, Merati AA (2020) Synthesis of carbon nanotubes composite nanofibers for ultrahigh performance UV protection and microwave absorption applications. Diam Relat Mater 107:107896. https://doi.org/10.1016/j.diamond.2020.107896
  43. Pandimurugan R, Thambidurai S (2017) UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int J Biol Macromol 105:788-795. https://doi. org/10.1016/j.ijbiomac.2017.07.097
  44. Sun Y, Zhao X, Liu R et al (2018) Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat 123:306-313. https://doi.org/10.1016/j.porgcoat.2018.07.013
  45. Cerhan-Haink A, Basim GB (2020) Promoting photocatalytic cleaning efficiency of textile finishing solutions with nanoboron as a p-type dopant. J Surfactant Deterg 23:433-444. https:// doi.org/10.1002/jsde.12380
  46. Saleemi S, Naveed T, Riaz T et al (2020) Surface functionalization of cotton and pc fabrics using SiO 2 and ZnO nanoparticles for durable flame retardant properties. Coatings 10. https://doi.org/ 10.3390/coatings10020124
  47. Román LE, Amézquita MJ, Uribe CL et al (2020) In situ growth of CuO nanoparticles onto cotton textiles. Adv Nat Sci Nanosci Nanotechnol 11. https://doi.org/10.1088/2043-6254/ab8a2f
  48. Moazami A, Montazer M (2016) A novel multifunctional cotton fabric using ZrO 2 NPs/urea/ CTAB/MA/SHP: introducing flame retardant, photoactive and antibacterial properties. J Text Inst 107:1253-1263. https://doi.org/10.1080/00405000.2015.1100806
  49. Ashjaran A, Azarmi R, Ashjaran M (2014) Overview of some materials and test methods for antimicrobial finishing on textile. Res J Pharm Biol Chem Sci 5:1252-1262
  50. Joshi M, Roy A (2018) Antimicrobial textiles based on metal and metal oxide nano-particles. In: Nanomaterials in the wet processing of textiles. Wiley Blackwell, Department of Textile Technology, Indian Institute of Technology, New Delhi, pp 71-111
  51. Bashiri Rezaie A, Montazer M, Mahmoudi Rad M (2018) Scalable, eco-friendly and simple strategy for nano-functionalization of textiles using immobilized copper-based nanoparticles. Clean Techn Environ Policy 20:2119-2133. https://doi.org/10.1007/s10098-018-1596-1
  52. Zheng Z, Gu Z, Huo R, Ye Y (2009) Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl Surf Sci 255:7263-7267. https:// doi.org/10.1016/j.apsusc.2009.03.084
  53. Singh J, Khan SA, Shah J et al (2017) Nanostructured TiO 2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl Surf Sci 422:953-961. https://doi. org/10.1016/j.apsusc.2017.06.068
  54. Zhao L, Lu J (2017) Fabrication and application of mesoporous TiO 2 film coated on Al wire by sol-gel method with EISA. Appl Surf Sci 402:369-371. https://doi.org/10.1016/j.apsusc.2017. 01.023
  55. Touhid SSB, Shawon MRK, Deb H et al (2020) Nature inspired rGO-TiO 2 micro-flowers on polyester fabric using semi-continuous dyeing method: a binder-free approach towards durable antibacterial performance. Synth Met 261:116298. https://doi.org/10.1016/j.synthmet.2020.116298
  56. Yu J, Pang Z, Zheng C et al (2019) Cotton fabric finished by PANI/TiO 2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Appl Surf Sci 470:84-90. https://doi. org/10.1016/j.apsusc.2018.11.112
  57. Nolan NT, Seery MK, Hinder SJ et al (2010) A systematic study of the effect of silver on the chelation of formic acid to a titanium precursor and the resulting effect on the anatase to rutile transformation of TiO 2 . J Phys Chem C 114:13026-13034. https://doi.org/10.1021/jp1016054
  58. Pakdel E, Wang J, Kashi S et al (2020) Advances in photocatalytic self-cleaning, super- hydrophobic and electromagnetic interference shielding textile treatments. Adv Colloid Interf Sci 277:102116. https://doi.org/10.1016/j.cis.2020.102116
  59. Gao D, Liu J, Lyu L et al (2020) Construct the multifunction of cotton fabric by synergism between Nano ZnO and ag. Fibers Polym 21:505-512. https://doi.org/10.1007/s12221-020-9347-4
  60. Küçük M, Öveçoğlu ML (2018) Surface modification and characterization of polyester fabric by coating with low temperature synthesized ZnO nanorods. J Sol-Gel Sci Technol 88:345-358. https://doi.org/10.1007/s10971-018-4817-5
  61. Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65-71. https://doi.org/10.1038/s41565-017-0013-y
  62. Arvidsson R, Molander S, Sandén BA (2011) Impacts of a silver-coated future. J Ind Ecol 15:844-854. https://doi.org/10.1111/j.1530-9290.2011.00400.x
  63. Radetić M, Marković D (2019) Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles. Cellulose 26:8971-8991. https://doi.org/10.1007/s10570-019-02714-4
  64. Khudyakov IV, Turro NJ, Yakushenko IK (1992) Kinetics and mechanism of the photochromic transformations of N-salicylidene-4-hydroxy-3,5-dimethylaniline and its complex with uranium (VI) dioxide. J Photochem Photobiol A Chem 63:25-31. https://doi.org/10.1016/1010-6030(92) 85149-O
  65. Seipel S, Yu J, Periyasamy AP et al (2017) Characterization and optimization of an inkjet- printed smart textile UV-sensor cured with UV-LED light. IOP Conf Ser Mater Sci Eng 254. https://doi.org/10.1088/1757-899X/254/7/072023
  66. Periyasamy AP, Vikova M, Vik M (2017) A review of photochromism in textiles and its measurement. Text Prog 49:53-136. https://doi.org/10.1080/00405167.2017.1305833
  67. Seipel S, Yu J, Periyasamy AP et al (2017) Resource-efficient production of a smart textile uv sensor using photochromic dyes: Characterization and optimization. In: Narrow and smart textiles. Springer Nature Switzerland AG, pp 251-257
  68. Dürr H (2003) General introduction. In: Henri B-L, Dürr H (eds) Photochromism: molecules and systems, first. Elsevier B.V, Amesterdam, pp 1-14
  69. Periyasamy AP, Viková M, Vik M (2020) Preparation of photochromic isotactic polypropylene filaments: influence of drawing ratio on their optical, thermal and mechanical properties. Text Res J 90:2136-2148. https://doi.org/10.1177/0040517520912037
  70. Seipel S, Yu J, Periyasamy AP et al (2018) Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Adv 8:28395-28404. https://doi.org/10. 1039/C8RA05856C
  71. Periyasamy AP, Vikova M, Vik M (2019) Photochromic polypropylene filaments: impacts of mechanical properties on kinetic behaviour. Fibres Text East Eur 27:19-25. https://doi.org/10. 5604/01.3001.0013.0738
  72. Viková M, Periyasamy AP, Vik M, Ujhelyiová A (2017) Effect of drawing ratio on difference in optical density and mechanical properties of mass colored photochromic polypropylene fila- ments. J Text Inst 108:1365-1370. https://doi.org/10.1080/00405000.2016.1251290
  73. White MA, Bourque A (2013) Colorant, thermochromic. In: Luo R (ed) Encyclopedia of color science and technology. Springer, New York, pp 1-12
  74. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004
  75. Periyasamy AP, Vik M (2018) Chromic materials: fundamentals, measurements, and applica- tions, first. Apple Academic Press (CRC Press), Toronto
  76. Khatri Z, Ali S, Khatri I et al (2015) UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning. Appl Surf Sci 342:64-68. https://doi.org/10.1016/j.apsusc.2015.03.046
  77. Shuiping L, Lianjiang T, Weili H et al (2010) Cellulose acetate nanofibers with photochromic property: fabrication and characterization. Mater Lett 64:2427-2430. https://doi.org/10.1016/j. matlet.2010.08.018
  78. Hu S, Wang D, Yang K, et al (2020) Copper coated textiles for inhibition of virus spread. In: Textile Bioengineering and Informatics Symposium Proceedings 2020 -13th Textile Bioengi- neering and Informatics Symposium, TBIS 2020
  79. Wang Y-F, Militky J, Periyasamy AP, et al (2020) Disinfection mechanisms of UV light and ozonization. In: Textile Bioengineering and Informatics Symposium Proceedings 2020 -13th Textile Bioengineering and Informatics Symposium, TBIS 2020
  80. Tan X-D, Peng Q-Y, Yang K, et al (2020) Influence of UV light and ozonization on microbes. In: Textile Bioengineering and Informatics Symposium Proceedings 2020 -13th Textile Bioengineering and Informatics Symposium, TBIS 2020