Intelligent Dendritic Neural Model for Classification Problems
Symmetry
https://doi.org/10.3390/SYM14010011Abstract
In recent years, the dendritic neural model has been widely employed in various fields because of its simple structure and inexpensive cost. Traditional numerical optimization is ineffective for the parameter optimization problem of the dendritic neural model; it is easy to fall into local in the optimization process, resulting in poor performance of the model. This paper proposes an intelligent dendritic neural model firstly, which uses the intelligent optimization algorithm to optimize the model instead of the traditional dendritic neural model with a backpropagation algorithm. The experiment compares the performance of ten representative intelligent optimization algorithms in six classification datasets. The optimal combination of user-defined parameters for the model evaluates by using Taguchi’s method, systemically. The results show that the performance of an intelligent dendritic neural model is significantly better than a traditional dendritic neural model. The intelligent de...
References (55)
- Novaković, J.D.; Veljović, A. Evaluation of classification models in machine learning. Theory Appl. Math. Comput. Sci. 2017, 7, 39-46.
- Awad, W.A.; ELseiofi, S.M. Machine learning methods for spam e-mail classification. IJCSIT 2011, 3, 173-184. [CrossRef]
- Ossama, A.H.; Mohamed, A.R. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Trans. 2014, 22, 1533-1545.
- Argentiero, P.; Chin, R. An automated approach to the design of decision tree classifiers. IEEE Trans. 1982, PAMI-4, 51-57.
- Rish, I. An empirical study of the naïve Bayes classifier. IJCAI 2001, 3, 41-46.
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]
- Schalkoff, R.J. Artificial Neural Networks; McGraw-Hill: New York, USA, USA, 1997.
- Zouhal, L.M.; Denoeux, T. An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans. 1998, 28, 263-271. [CrossRef]
- Dietterich, T.G. The Handbook of Brain Theory and Neural Networks; The MIT Press: Cambridge, MA, USA, 2002.
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1990, 52, 99-115.
- Rosenblatt, F. The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Rev. 1958, 65, 386. [CrossRef]
- Rumelhart, D.E.; Geoffrey, E.H. Learning representations by back-propagating errors. Nature 1986, 323, 533-536. [CrossRef]
- Riess, J. Adaptive neural network control of cyclic movements using functional neuromuscular stimulation. IEEE Trans. 2000, 8, 42-52. [CrossRef] [PubMed]
- Albawi, S.; Mohammed, T.A.; Al-zawi, S. Understanding of a Convolutional Neural Network; ICET2017: Antalya, Turkey, 2017.
- Terrence, L.F. Feedforward Neural Network Methodology; Springer Science & Business Media: Berlin, Germany, 2006.
- Gao, S.C.; Zhou, M.C. Dendritic neuron with effective learning algorithms for classification, approximation, and prediction. IEEE Trans. 2019, 30, 601-614. [CrossRef]
- Todo, Y.; Tamura, H.; Yamashita, K.; Tang, Z. Unsupervised learnable neuron model with nonlinear interaction on dendrites. Neural Netw. 2014, 60, 96-103. [CrossRef] [PubMed]
- Ji, J.K.; Gao, S.C.; Cheng, J. An approximate logic neuron model with a dendritic structure. Neurocomputing 2016, 173, 1775-1783.
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627-2636. [CrossRef]
- Losonczy, A.; Makara, J. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 2008, 452, 436-441. [CrossRef] [PubMed]
- Losonczy, A.; Magee, J. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 2006, 50, 291-307. [CrossRef]
- Branco, T.; Häusser, M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr. Opin. Neurobiol. 2010, 20, 494-502. [CrossRef]
- Yu, Y.; Wang, Y.R.; Gao, S.C.; Tang, Z. Statistical modeling and prediction for tourism economy using dendritic neural network. Comput. Intell. Neurosci. 2017, 2017, 9. [CrossRef] [PubMed]
- Tang, Y.J.; Ji, J.K.; Zhu, Y.L.; Gao, S.C.; Tang, Z.; Todo, Y. A differential evolution-oriented pruning neural network model for bankruptcy prediction. Complexity 2019, 2019, 21. [CrossRef]
- Sha, Z.J.; Hu, L.; Todo, Y.; Ji, J.K.; Gao, S.C.; Tang, Z. A breast cancer classifier using a neuron model with dendritic nonlinearity. IEICE Trans. Inf. Syst. 2015, 98, 1365-1376. [CrossRef]
- Jiang, T.; Gao, S.C.; Wang, D.Z.; Ji, J.K.; Todo, Y.; Tang, Z. A neuron model with synaptic nonlinearities in a dendritic tree for liver disorders. IEEJ Trans. Electr. Electron. Eng. 2017, 12, 105-115. [CrossRef]
- Jia, D.B.; Yuka, F. Validation of large-scale classification problem in dendritic neuron model using particle antagonism mechanism. Electronics 2020, 9, 792. [CrossRef]
- Gao, S.C.; Zhou, M.C.; Wang, Z. Fully Complex-valued Dendritic Neuron Model. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]
- Jia, D.B.; Li, C.H. Application and evolution for neural network and signal processing in large-scale systems. Complexity 2021, 2021, 7. [CrossRef]
- Luo, X.D.; Wen, X.H.; Zhou, M.C.; Abusorrah, A. Decision-Tree-Initialized Dendritic Neuron Model for Fast and Accurate Data Classification. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]
- Jia, D.B.; Dai, H.W. EEG processing in Internet of medical things using non-harmonic analysis: Application and evolution for SSVEP responses. IEEE Access 2019, 7, 11318-11327. [CrossRef]
- Jia, D.B.; Zheng, S.X. A Dendritic Neuron Model with Nonlinearity Validation on Istanbul Stock and Taiwan Futures Exchange Indexes Prediction; IEEE CCIS: Nanjing, China, 2018.
- Xu, W.X.; Li, C.H. Optimizing the Weights and Thresholds in Dendritic Neuron Model Using the Whale Optimization Algorithm; Journal of Physics: Conference Series; IOP Publishing: Beijing, China, 2021.
- Hecht-Nielsen, R. Theory of the backpropagation neural network. Neural Netw. Percept. 1992, 65-93. [CrossRef]
- Ji, J.K.; Song, S.B.; Tang, Y.J.; Gao, S.C.; Tang, Z.; Todo, Y. Approximate logic neuron model trained by states of matter search algorithm. Knowl.-Based Syst. 2019, 163, 120-130. [CrossRef]
- Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzerland; New York, NY, USA, 2019; pp. 43-55.
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65-85. [CrossRef]
- Ali, K.; Neda, F. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53-70.
- Soto, R.; Crawford, B.; Olivares, R. A reactive population approach on the dolphin echolocation algorithm for solving cell manufacturing systems. Mathematics 2020, 8, 1389. [CrossRef]
- Dan, S. Biogeography-based optimization. IEEE Trans. 2008, 12, 702-713.
- Zhang, Y.; Gu, X. Biogeography-based optimization algorithm for large-scale multistage batch plant scheduling. Expert Syst. Appl. 2020, 162, 113776. [CrossRef]
- Höhfeld, M.; Rudolph, G. Towards a theory of population-based incremental learning. In Proceedings of the IEEE Conference on Evolutionary Computation, Indianapolis, IN, USA, 13-16 April 1997; pp. 1-5.
- Li, Y.; Feng, X.; Wang, G. Application of Population Based Incremental Learning Algorithm in Satellite Mission Planning. In Proceedings of the International Conference on Wireless and Satellite Systems, Nanjing, China, 17-18 September 2020; Springer: Cham, Switzerland, 2020.
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4-6 October 1995; IEEE: Nagoya, Japan, 2002.
- Wang, F.; Zhang, H.; Zhou, A. A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 2021, 60, 100808. [CrossRef]
- Dorigo, M.; Birattari, M. Ant colony optimization. IEEE Commun. Intell. Mag. 2006, 1, 28-39. [CrossRef]
- Paniri, M.; Dowlatshahi, M.B.; Nezamabadi-pour, H. MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowl.-Based Syst. 2020, 192, 105285. [CrossRef]
- Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [CrossRef]
- Wang, H.; Wang, W.; Xiao, S.; Cui, Z.; Xu, M. Improving artificial bee colony algorithm using a new neighborhood selection mechanism. Inf. Sci. 2020, 527, 227-240. [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51-67. [CrossRef]
- Jafari-Asl, J.; Seghier, M.E.; Ohadi, S. Efficient method using Whale Optimization Algorithm for reliability-based design optimization of labyrinth spillway. Appl. Soft Comput. 2021, 101, 107036. [CrossRef]
- Heidari, A.A.; Mirjalili, S. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849-872.
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
- UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on 23 October 2021).
- Jugulum, R.; Taguchi, S. Computer-Based Robust Engineering: Essentials for DFSS; ASQ Quality Press: Milwaukee, WI, USA, 2004.