Academia.eduAcademia.edu

Outline

Implementation and application of automata

2012

https://doi.org/10.1007/978-3-319-60134-2

Abstract

This book constitutes the thoroughly refereed papers of the 17th International Conference on Implementation and Application of Automata, CIAA 2012, held in Porto, Portugal, in July 2012. The 21 revised full papers presented together with 5 invited papers and 7 short papers were carefully selected from 53 submissions. The papers cover various topics such as automata applications in formal verification methods, natural language processing, pattern matching, data storage and retrieval, and bioinformatics, as well as theoretical ...

References (338)

  1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president using open-audit voting: analysis of real-world use of Helios. In: Proceedings of the 2009 Con- ference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)
  2. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Hankes Drielsma, P., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA Tool for the automated validation of internet security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281-285. Springer, Berlin (2005)
  3. Blanchet, B.: An automatic security protocol verifier based on resolution theorem proving (invited tutorial). In: 20th International Conference on Automated Deduction (CADE-20) (2005) References
  4. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147-161. Springer, Berlin (2001)
  5. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed automata. Inf. Process. Lett. 98(5), 188-194 (2006)
  6. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under energy constraints. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control. HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pp. 61-70. ACM (2010)
  7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33-47. Springer, Berlin (2008)
  8. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound-constrained runs in weighted timed automata. Perform. Eval. 73, 91-109 (2014)
  9. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted timed automata. In: Ninth International Conference on Quantitative Evaluation of Systems. QEST 2012, London, UK, September 17-20, 2012, pp. 128-137. IEEE Computer Society (2012)
  10. Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strategies in one clock priced timed games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 345-356. Springer, Berlin (2006)
  11. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-energy games. In: Esparza, J., Tronci, E. (eds.) Proceedings Sixth International Symposium on Games, Automata, Logics and Formal Verification. GandALF 2015, Genoa, Italy, September 21-22, 2015. EPTCS, vol. 193, pp. 1-15 (2015)
  12. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95-115. Springer, Berlin (2011)
  13. Hansen, T.D., Ibsen-Jensen, R., Miltersen, P.B.: A faster algorithm for solving one-clock priced timed games. In: D'Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 531-545. Springer, Berlin (2013) References
  14. Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS. LNCS, vol. 6015, pp. 158-174. Springer, Berlin (2010)
  15. Bloom, S.L., Ésik, Z., Stefanescu, G.: Notes on equational theories of relations. Algebra Universalis 33(1), 98-126 (1995)
  16. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: Proceedings of POPL, pp. 457-468. ACM (2013)
  17. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372-386. Springer, Heidelberg (2004)
  18. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677-691 (1986)
  19. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surveys 24(3), 293-318 (1992)
  20. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
  21. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparzam, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2-22. Springer, Berlin (2010)
  22. Ésik, Z., Bernátsky, L.: Equational properties of Kleene algebras of relations with conver- sion. Theoret. Comput. Sci. 137(2), 237-251 (1995)
  23. Hopcroft, J.E.: An n log n algorithm for minimizing in a finite automaton. In: Proceedings of International Symposium of Theory of Machines and Computations, pp. 189-196. Academic Press (1971)
  24. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Technical report 114, Cornell University (1971)
  25. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366-390 (1994)
  26. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19(3), 427-443 (1997)
  27. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical report, CIS, Cornell University (2008)
  28. Meyer, A., Stockmeyer, L.J.: Word problems requiring exponential time. In: Proceedings of STOC, pp. 1-9. ACM (1973)
  29. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
  30. Pous, D.: Symbolic algorithms for language equivalence and Kleene algebra with tests. In: Proceedings of POPL 2015, pp. 357-368. ACM (2015)
  31. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215-225 (1975)
  32. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17-30. Springer, Berlin (2006) References
  33. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S. Ö.: Determinizing monitors for HML with recursion. arXiv preprint arXiv:1611.10212 (2016)
  34. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan- tified event automata: towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68-84.
  35. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9
  36. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime verification with min- imal intrusion through parallelism. Formal Methods Syst. Des. 46(3), 317-348 (2015)
  37. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78(1), 198-210 (2012)
  38. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks through multiparty session types. In: Beyer, D., Boreale, M. (eds.)
  39. FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 50-65. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38592-6 5
  40. Cassar, I., Francalanza, A.: On implementing a monitor-oriented program- ming framework for actor systems. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 176-192. Springer, Cham (2016). doi:10.1007/ 978-3-319-33693-0 12
  41. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149- 158 (1986)
  42. dAmorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364-378. Springer, Heidelberg (2005). doi:10.1007/11513988 36
  43. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92-107. Springer, Cham (2014). doi:10.1007/978-3-319-11164-3 9
  44. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 145-161. Springer, Heidelberg (2016). doi:10.1007/ 978-3-662-49630-5 9
  45. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying hennessy-milner logic with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 71-86. Springer, Cham (2015). doi:10.1007/978-3-319-23820-3 5
  46. Gramlich, G., Schnitger, G.: Minimizing NFA's and regular expressions. J. Comput. Syst. Sci. 73(6), 908-923 (2007)
  47. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming P = NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
  48. DLT 2007. LNCS, vol. 4588, pp. 205-216. Springer, Heidelberg (2007). doi:10.1007/ 978-3-540-73208-2 21
  49. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117-1141 (1993)
  50. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3), 333-354 (1983)
  51. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur- sion. Theor. Comput. Sci. 72(2&3), 265-288 (1990)
  52. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge- braic Program. 78(5), 293-303 (2009)
  53. Luo, Q., Roşu, G.: EnforceMOP: a runtime property enforcement system for multi- threaded programs. In: International Symposium on Software Testing and Analysis, New York, USA, pp. 156-166 (2013)
  54. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: 12th Annual Symposium on Switching and Automata Theory (1971)
  55. Milner, R. (ed.): A Calculus of Communicating Systems. Springer, Heidelberg (1980)
  56. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114-125 (1959)
  57. Rabinovich, A.: A complete axiomatisation for trace congruence of finite state behaviors. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 530-543. Springer, Heidelberg (1994). doi:10. 1007/3-540-58027-1 25
  58. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TIS- SEC) 3(1), 30-50 (2000)
  59. Sen, K., Vardhan, A., Agha, G., Roşu, G.: Efficient decentralized monitoring of safety in distributed systems. In: International Conference on Software Engineer- ing, pp. 418-427 (2004)
  60. Sipser, M.: Introduction to the Theory of Computation, Computer Science. PWS Publishing Company (1997)
  61. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1-37 (1994)
  62. Yamagata, Y., Artho, C., Hagiya, M., Inoue, J., Ma, L., Tanabe, Y., Yamamoto, M.: Runtime monitoring for concurrent systems. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 386-403. Springer, Cham (2016). doi:10.1007/ 978-3-319-46982-9 24
  63. References
  64. Aho, A.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 255-300. MIT Press (1990)
  65. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 70-81. Springer, Heidelberg (2013). doi:10. 1007/978-3-642-38771-5 8
  66. Berglund, M., van der Merwe, B.: On the semantics of regular expres- sion parsing in the wild. Theor. Comput. Sci. (2016). doi:10.1016/j.tcs. 2016.09.006
  67. Friedl, J.: Mastering regular expressions, 1st edn. O'Reilly & Associates Inc. (1997)
  68. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata-a survey. Inf. Comput. 209(3), 456-470 (2011)
  69. RegexAdvice.com. Regular expression library. http://regexlib.com. Accessed 9 Jan 2017
  70. Sakuma, Y., Minamide, Y., Voronkov, A.: Translating regular expres- sion matching into transducers. J. Appl. Logic 10(1), 32-51 (2012)
  71. Weideman, N., van der Merwe, B., Berglund, M., Watson, B.: Analyz- ing matching time behavior of backtracking regular expression match- ers by using ambiguity of NFA. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 322-334. Springer, Cham (2016). doi:10.1007/978-3-319-40946-7 27
  72. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75, 87-106 (1987)
  73. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: 7th Linguistic Annotation Workshop & Interoperability with Discourse, Sofia, Bulgaria (2013)
  74. Björklund, H., Björklund, J., Ericson, P.: On the regularity and learnability of ordered DAG languages. Technical report UMINF 17.12, Umeå University (2017)
  75. Björklund, H., Drewes, F., Ericson, P.: Between a rock and a hard place -uni- form parsing for hyperedge replacement DAG grammars. In: 10th International Conference on Language and Automata Theory and Applications, Prague, Czech Republic, pp. 521-532 (2016)
  76. Björklund, J., Fernau, H., Kasprzik, A.: Polynomial inference of universal automata from membership and equivalence queries. Inf. Comput. 246, 3-19 (2016)
  77. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing graphs with hyperedge replacement grammars. In: 51st Annual Meeting of the Association for Computational Linguistics (ACL 2013), Sofia, Bulgaria, pp. 924- 932 (2013)
  78. Drewes, F., Björklund, J., Maletti, A.: MAT learners for tree series: an abstract data type and two realizations. Acta Informatica 48(3), 165 (2011)
  79. Drewes, F., Högberg, J.: Query learning of regular tree languages: how to avoid dead states. Theory Comput. Syst. 40(2), 163-185 (2007)
  80. Drewes, F., Kreowski, H.-J., Habel, A.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.), Handbook of Graph Grammars, vol. 1, pp. 95-162. World Scientific (1997)
  81. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Automata, Lang. Comb 12(3), 332-354 (2007)
  82. Hara, S., Shoudai, T.: Polynomial time MAT learning of c-deterministic regular for- mal graph systems. In: International Conference on Advanced Applied Informatics (IIAI AAI 2014), Kitakyushu, Japan, pp. 204-211 (2014)
  83. Högberg, J.: A randomised inference algorithm for regular tree languages. Nat. Lang. Eng. 17(02), 203-219 (2011)
  84. Kozen, D.: On the Myhill-Nerode theorem for trees. Bull. EATCS 47, 170-173 (1992)
  85. Maletti, A.: Learning deterministically recognizable tree series -revisited. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 218-235.
  86. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75414-5 14
  87. Okada, R., Matsumoto, S., Uchida, T., Suzuki, Y., Shoudai, T.: Exact learning of finite unions of graph patterns from queries. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 298-312. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75225-7 25
  88. Rozenberg, G., Welzl, E.: Boundary NLC graph grammars-basic definitions, normal forms, and complexity. Inf. Control 69(1-3), 136-167 (1986)
  89. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. Theor. Comput. Sci. 76(2-3), 223-242 (1990)
  90. Shirakawa, H., Yokomori, T.: Polynomial-time MAT learning of c-deterministic context-free grammars. Trans. Inf. Process. Soc. Jpn. 34, 380-390 (1993) References
  91. Birget, J.-C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185-190 (1992)
  92. Bordihn, H., Holzer, M.: On the number of active symbols in L and CD grammar systems. J. Autom. Lang. Comb. 6(4), 411-426 (2001)
  93. Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 10 20 states and beyond. Inform. Comput. 98(2), 142-170 (1992)
  94. Ellul, K.: Descriptional complexity measures of regular languages. Master thesis, Computer Science, University of Waterloo, Ontario, Canada (2002)
  95. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9, 1-19 (1974)
  96. Kleijn, H.C.M., Rozenberg, G.: A study in parallel rewriting systems. Inform. Con- trol 44, 134-163 (1980)
  97. Lockefeer, L.: Formal specification and verification of TCP extended with the Win- dow Scale Option. Master thesis, Vrije Universiteit Amsterdam, The Netherlands (2013)
  98. Wood, D.: Theory of Computation. Wiley (1987)
  99. Yokomori, T., Wood, D., Lange, K.-J.: A three-restricted normal form theorem for ET0L languages. Inform. Process. Lett. 14(3), 97-100 (1982) and 21(1), 53 (1985) References
  100. Ang, T., Brzozowski, J.A.: Languages convex with respect to binary relations, and their closure properties. Acta Cybernet. 19(2), 445-464 (2009)
  101. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of Mathematics and its Applications). Cambridge University Press, New York (2010)
  102. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71-89 (2010)
  103. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sci 24(6), 691-708 (2013)
  104. Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideal languages. Discrete Math. Theoret. Comput. Sci. 18(3), 1-25 (2016). Paper #15
  105. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages. Theory Comput. Syst. 54, 277-292 (2014)
  106. Brzozowski, J.A., Sinnamon, C.: Complexity of prefix-convex regular languages (2016). http://arxiv.org/abs/1605.06697
  107. Brzozowski, J.A., Sinnamon, C.: Complexity of right-ideal, prefix-closed, and prefix-free regular languages. Acta Cybernet. (2017, to appear)
  108. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13-27 (2014)
  109. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117-128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22321-1 11
  110. Crochemore, M., Hancart, C.: Automata for pattern matching. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 399-462. Springer, Heidelberg (1997)
  111. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. 327(3), 319-347 (2004)
  112. Iván, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116(5), 356- 360 (2016)
  113. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transfor- mations of a finite set. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 213-224. Springer, Heidelberg (2005). doi:10. 1007/978-3-540-30500-2 20
  114. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266-1268 (1970). (Russian). English translation: Soviet Math. Dokl. 11, 1373-1375 (1970)
  115. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 481-492. North-Holland (1973)
  116. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221-234 (2001)
  117. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315-328 (1994) References
  118. Arnold, A., Niwiński, D.: Rudiments of µ-calculus. Studies in Logic and the Foun- dations of Mathematics, vol. 146. Elsevier, New York (2001)
  119. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
  120. Blackburn, P., Benthem, J., Wolter, F.: Handbook of Modal Logic. Studies in Logic and Practical Reasoning. Elsevier, New York (2007)
  121. Bradfield, J., Stirling, C.: Modal µ-calculi. In: Handbook of Modal Logic, pp. 721- 756. Elsevier (2007)
  122. Bradfield, J., Walukiewicz, I.: The µ-calculus and model-checking. In: Handbook of Model Checking. Springer (2015)
  123. Bruse, F., Friedmann, O., Lange, M.: On guarded transformation in the modal µ-calculus. Logic J. IGPL 23(2), 194-216 (2015)
  124. Cleaveland, R., Purushothaman Iyer, S., Narasimha, M.: Probabilistic temporal logics via the modal µ-calculus. Theor. Comput. Sci. 342(2-3), 316-350 (2005)
  125. Castro, P., Kilmurray, C., Piterman, N.: Tractable probabilistic µ-calculus that expresses probabilistic temporal logics. In: 32nd Symposium on Theoretical Aspects of Computer Science. Schloss Dagstuhl (2015)
  126. Chatterjee, K., Piterman, N.: Obligation Blackwell games and p-Automata. CoRR, abs/1206.5174 (2013)
  127. Emerson, E.A., Jutla S.: Tree automata, µ-calculus and determinacy. In: Proceed- ings of 32nd Annual Symposium on Foundations of Computer Science, pp. 368-377. IEEE (1991)
  128. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the proposi- tional µ-calculus. In: Proceedings of the First Annual IEEE Symposium on Logic in Computer Science, LICS, pp. 267-278 (1986)
  129. Grädel, E., Thomas, W., Wilke, T.: Automata Logics, and Infinite Games: A Guide to Current Research. Springer, New York (2002)
  130. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Pro- ceedings of 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, 29 June-2 July, pp. 111-122 (1997)
  131. Janin, D., Walukiewicz, I.: Automata for the modal µ-calculus and related results. Mathematical Foundations of Computer Science, pp. 552-562 (1995)
  132. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27(3), 333-354 (1983)
  133. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312-360 (2000)
  134. Mio, M.: Game semantics for probabilistic modal µ-calculi. Ph.D. thesis, University of Edinburgh (2012)
  135. Mio, M.: Probabilistic modal µ-calculus with independent product. Logical Meth- ods Comput. Sci. 8(4), 1-36 (2012)
  136. Mio, M., Simpson, A.K.: Lukasiewicz µ-calculus. CoRR, abs/1510.00797 (2015)
  137. Niwiński, D.: Fixed points vs. infinite generation. In: Proceedings of the Third Annual IEEE Symposium on Logic in Computer Science, LICS, pp. 402-409 (1988)
  138. Niwiński, D.: Fixed point characterization of infinite behavior of finite-state sys- tems. Theor. Comput. Sci. 189(1-2), 1-69 (1997)
  139. Schneider, K.: Verification of Reactive Systems: Formal Methods and Algorithms. Texts in Theoretical Computer Science. Springer, Heidelberg (2004)
  140. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc. Math. Belg. 8(2), 359-391 (2001) References
  141. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)
  142. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71-89 (2010)
  143. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sc. 24(6), 691-708 (2013)
  144. Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideals (2015). http://arxiv.org/abs/1511.00157
  145. Brzozowski, J.A., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free regular languages. Acta Cyber. 21(4), 507-527 (2014)
  146. Brzozowski, J.A., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37-53 (2012)
  147. Brzozowski, J.A., Shallit, J., Xu, Z.: Decision problems for convex languages. Inf. Comput. 209, 353-367 (2011)
  148. Brzozowski, J.A., Sinnamon, C.: Complexity of Prefix-Convex Regular Languages (2017, to appear). http://arxiv.org/abs/1605.06697
  149. Brzozowski, J.A., Sinnamon, C.: Most Complex Non-Returning Regular Languages (2017). http://arxiv.org/abs/1701.03944
  150. Brzozowski, J., Szyku la, M.: Complexity of suffix-free regular languages. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 146-159.
  151. Springer, Cham (2015). doi:10.1007/978-3-319-22177-9 12
  152. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13-27 (2014)
  153. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94-102. Springer, Heidelberg (2012). doi:10. 1007/978-3-642-25929-6 9
  154. Eom, H.S., Han, Y.S., Jirásková, G.: State complexity of basic operations on non- returning regular languages. Fundam. Informaticae 144(2), 161-182 (2016)
  155. Ferens, R., Szyku la, M.: Complexity of bifix-free regular languages (2017). http:// arxiv.org/abs/1701.03768
  156. The GAP Group: GAP -Groups, Algorithms, and Programming (2016). http:// www.gap-system.org
  157. Iván, S.: Complexity of atoms, combinatorially. Inf. Process. Lett. 116(5), 356-360 (2016)
  158. Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431-442. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85780-8 34
  159. Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-free languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 226-237. Springer, Cham (2014). doi:10.1007/978-3-319-08846-4 17
  160. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 511-607.
  161. Springer, Heidelberg (1997)
  162. McNaughton, R., Papert, S.A.: Counter-Free Automata. The MIT Press, Cam- bridge (1971). (M.I.T. Research Monograph No. 65)
  163. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679-746. Springer, New York, USA (1997)
  164. Šebej, J.: Reversal on regular languages and descriptional complexity. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 265-276.
  165. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39310-5 25
  166. Szyku la, M., Wittnebel, J.: Syntactic complexity of bifix-free languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS, vol. 10329, pp. 201-212. Springer, Cham (2017)
  167. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Molecular Biology. Ellis Horwood, Chichester (1993)
  168. Fernau, H.: An essay on general grammars. J. Automata Lang. Comb. 21, 69-92 (2016)
  169. Fernau, H., Kuppusamy, L.: Parikh images of matrix ins-del systems. In: Gopal, T.V., Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 201-215.
  170. Springer, Cham (2017). doi:10.1007/978-3-319-55911-7 15
  171. Fernau, H., Kuppusamy, L., Raman, I.: Generative power of graph-controlled ins- del systems with small sizes. Accepted with J. Automata Lang. Comb. (2017)
  172. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness of graph-controlled insertion-deletion systems with binary sizes. Accepted with Theor. Comput. Sci. (2017). http://dx.doi.org/10.1016/j.tcs.2017.01.019
  173. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion- deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS, vol. 31, pp. 88-98 (2010)
  174. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique Théorique Appl. / Theor. Inf. Appl. 25, 473-498 (1991)
  175. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225-237. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54239-8 16
  176. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47-61 (1996)
  177. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion systems with one-sided contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333-344. Springer, Heidelberg (2008). doi:10. 1007/978-3-540-88282-4 31
  178. Marcus, S.: Contextual grammars. Rev. Roum. Mathématiques Pures Appliquées 14, 1525-1534 (1969)
  179. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205-217. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74593-8 18
  180. Pȃun, Gh.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
  181. Pȃun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para- digms. Springer, Heidelberg (1998)
  182. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Nat. Comput. 2(4), 321-336 (2003)
  183. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J. Moldova 18(2), 210-245 (2010) References
  184. Colcombet, T., Kuperberg, D., Löding, C., Vanden Boom, M.: Deciding the weak definability of Büchi definable tree languages. In: CSL, pp. 215-230 (2013)
  185. Colcombet, T., Löding, C.: The nesting-depth of disjunctive µ-calculus for tree languages and the limitedness problem. In: CSL, pp. 416-430 (2008)
  186. Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and distance-parity automata. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 398-409. Springer, Heidelberg (2008). doi:10.1007/ 978-3-540-70583-3 33
  187. Cohen, R.S.: Star height of certain families of regular events. J. Comput. Syst. Sci. 4(3), 281-297 (1970)
  188. Colcombet, T.: The theory of stabilisation monoids and regular cost func- tions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 139-150. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02930-1 12
  189. Colcombet, T.: Regular cost-functions Part I: logic and algebra over words. Logical Meth. Comput. Sci. 9(3), 1-47 (2013)
  190. Eggan, L.C.: Transition graphs and the star-height of regular events. Mich. Math. J. 10, 385-397 (1963)
  191. Fijalkow, N., Gimbert, H., Kelmendi, E., Oualhadj, Y.: Deciding the value 1 problem for probabilistic leaktight automata. Logical Meth. Comput. Sci. 11(1) (2015). http://www.lmcs-online.org/ojs/viewarticle.php?id=1588
  192. Fijalkow, N., Gimbert, H., Oualhadj, Y.: Deciding the value 1 problem for probabilistic leaktight automata. In: LICS, pp. 295-304 (2012)
  193. Fijalkow, N., Kuperberg, A.D.: Automata with counters, monoids and equivalence. In: ATVA, pp. 163-167 (2014)
  194. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput. 78(2), 124-169 (1988)
  195. Kirsten, D.: Distance desert automata and the star height problem. Theor. Inf. Appl. 39(3), 455-509 (2005)
  196. Lombardy, S., Sakarovitch, J.: Star height of reversible languages and uni- versal automata. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 76-90.
  197. Springer, Heidelberg (2002). doi:10.1007/3-540-45995-2 12
  198. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230-245 (1963)
  199. Simon, I.: On semigroups of matrices over the tropical semiring. Theor. Inf. Appl. 28(3-4), 277-294 (1994) References
  200. Berstel, J.: Transductions and Context-Free Languages. Springer Fachmedien Wiesbaden GmbH, Wiesbaden (1979)
  201. Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York and London (1974)
  202. Filiot, E., Servais, F.: Visibly pushdown transducers with look-ahead. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 251-263. Springer, Heidelberg (2012). doi:10.1007/ 978-3-642-27660-6 21
  203. Kempe, A.: Part-of-speech tagging with two sequential transducers. In: Yu, S., Pȃun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 337-339. Springer, Heidelberg (2001). doi:10.1007/3-540-44674-5 34
  204. Mohri, M.: On some applications of finite-state automata theory to natural lan- guage processing. J. Nat. Lang. Eng. 2, 1-20 (1996)
  205. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269-311 (1997)
  206. Roche, E., Schabes, Y.: Finite-State Language Processing. MIT Press, Cambridge (1997)
  207. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam- bridge (2009)
  208. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k-valued trans- ducers. Theor. Comp. Sys. 47(3), 758-785 (2010). http://dx.doi.org/10.1007/ s00224-009-9206-6
  209. Santean, N.: Bimachines and structurally-reversed automata. J. Automata Lang. Comb. 9(1), 121-146 (2004)
  210. Schützenberger, M.P.: A remark on finite transducers. Inf. Control 4, 185-196 (1961)
  211. Souza, R.: A note on bimachines. In: 1a Escola de Informática Teórica e Métodos Formais, Natal -RN, pp. 83-92, November 2016
  212. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501-555 (1998)
  213. Canfield, E.R., Xing, G.: Approximate matching of XML document with regular hedge grammar. Int. J. Comput. Math. 82(10), 1191-1198 (2005)
  214. Comon, H., Dauchet, M., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007)
  215. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree edit distance. ACM Trans. Algorithms 6(1), 2:1-2:19 (2009)
  216. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596-615 (1987)
  217. Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA sec- ondary structures. In: Proceedings of the 2nd IEEE Computer Society Conference on Bioinformatics, pp. 159-168 (2003)
  218. Jiang, T., Wang, L., Zhang, K.: Alignment of trees -an alternative to tree edit. Theoret. Comput. Sci. 143(1), 137-148 (1995)
  219. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Pro- ceedings of the 6th Annual European Symposium on Algorithms, pp. 91-102 (1998)
  220. Kuboyama, T., Shin, K., Miyahara, T., Yasuda, H.: A theoretical analysis of align- ment and edit problems for trees. In: Proceedings of the 9th Italian Conference on Theoretical Computer Science, pp. 323-337 (2005)
  221. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707-710 (1966)
  222. López, D., España, S.: Error-correcting tree language inference. Pattern Recogn. Lett. 23(1-3), 1-12 (2002)
  223. López, D., Sempere, J.M., García, P.: Error correcting analysis for tree languages. Int. J. Pattern Recogn. Artif. Intell. 14(03), 357-368 (2000)
  224. Lu, C.L., Su, Z.-Y., Tang, C.Y.: A new measure of edit distance between labeled trees. In: Proceedings of the 7th Annual International Conference on Computing and Combinatorics, pp. 338-348 (2001)
  225. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In: Proceedings of the 5th International Workshop on the Web and Databases, pp. 61-66 (2002)
  226. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422-433 (1979)
  227. Voß, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA shapes. BMC Biol. 4(1), 1-23 (2006)
  228. Xing, G.: Approximate matching of XML documents with schemata using tree alignment. In: Proceedings of the 2014 ACM Southeast Regional Conference, pp. 43:1-43:4 (2014)
  229. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorith- mica 15(3), 205-222 (1996)
  230. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inf. Process. Lett. 49(5), 249-254 (1994)
  231. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Inf. Process. Lett. 42(3), 133-139 (1992) References
  232. Birget, J.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43(4), 185-190 (1992). doi:10.1016/0020-0190(92)90198-5
  233. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free regular languages. Acta Cybernetica 21(4), 507-527 (2014)
  234. Brzozowski, J.: Complexity in convex languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 1-15. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13089-2 1
  235. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages. Theoret. Comput. Sci. 470, 36-52 (2013). doi:10.1016/j.tcs.2012.10.055
  236. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages. Theory Comput. Syst. 54(2), 277-292 (2014). doi:10.1007/s00224-013-9515-7
  237. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94-102. Springer, Heidelberg (2012). doi:10. 1007/978-3-642-25929-6 9
  238. Han, Y., Salomaa, K.: Nondeterministic state complexity for suffix-free regular languages. In: McQuillan, I., Pighizzini, G. (eds.) DCFS 2010. EPTCS, vol. 31, pp. 189-196 (2010). doi:10.4204/EPTCS.31.21
  239. Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic oper- ations for prefix-free regular languages. Fundam. Inform. 90(1-2), 93-106 (2009). doi:10.3233/FI-2009-0008
  240. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14(6), 1087-1102 (2003). doi:10.1142/ S0129054103002199
  241. Hospodár, M., Jirásková, G., Mlynárčik, P.: Nondeterministic complexity of operations on closed and ideal languages. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 125-137. Springer, Cham (2016). doi:10.1007/ 978-3-319-40946-7 11
  242. Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330(2), 287-298 (2005). doi:10.1016/j.tcs.2004.04.011
  243. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Internat. J. Found. Comput. Sci. 22(7), 1639-1653 (2011). doi:10.1142/S0129054111008933
  244. Jirásková, G., Mlynárčik, P.: Complement on prefix-free, suffix-free, and non- returning NFA languages. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 222-233. Springer, Cham (2014). doi:10.1007/ 978-3-319-09704-6 20
  245. Jirásková, G., Olejár, P.: State complexity of intersection and union of suffix-free languages and descriptional complexity. In: Bordihn, H., et al. (eds.) NCMA 2009, vol. 256, pp. 151-166. Austrian Computer Society (2009). books.ocg.at
  246. Mlynárčik, P.: Complement on free and ideal languages. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 185-196. Springer, Cham (2015). doi:10. 1007/978-3-319-19225-3 16
  247. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997)
  248. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41-110. Springer, Heidelberg (1997) References
  249. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: A general theory of translation. Math. Syst. Theor. 3, 193-221 (1969)
  250. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling. Pars- ing, vol. I. Prentice-Hall (1972)
  251. Angluin, D.: Inference of reversible languages. J. ACM 29, 741-765 (1982)
  252. Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible turing machines. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 29-44. Springer, Cham (2015). doi:10.1007/978-3-319-20860-2 2
  253. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525-532 (1973)
  254. Bensch, S., Björklund, J., Kutrib, M.: Deterministic stack transducers. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 27-38. Springer, Cham (2016). doi:10.1007/978-3-319-40946-7 3
  255. Berstel, J.: Transductions and Context-Free-Languages. Teubner (1979)
  256. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276-287. Springer, Cham (2015). doi:10.1007/978-3-319-21500-6 22
  257. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Foundations of Computer Science (FOCS 1997), pp. 66-75. IEEE Computer Soci- ety (1997)
  258. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System Sci. 78, 1814-1827 (2012)
  259. Kutrib, M., Malcher, A.: One-dimensional cellular automaton transducers. Fun- dam. Inform. 126, 201-224 (2013)
  260. Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. Theor. Comput. Sci., to appear
  261. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183-191 (1961)
  262. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60, 354-367 (2000)
  263. Lecerf, Y.: Logique mathématique: machines de Turing réversible. C.R. Séances Acad. Sci. 257, 2597-2600 (1963)
  264. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241-254 (2011)
  265. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401-416. Springer, Heidelberg (1992). doi:10.1007/BFb0023844
  266. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comput. EC-12(2), 67-76 (1963)
  267. Caron, P., Flouret, M.: Glushkov construction for series: the non commutative case. Int. J. Comput. Math. 80(4), 457-472 (2003)
  268. Ésik, Z., Kuich, W.: Rationally additive semirings. J. UCS 8(2), 173-183 (2002)
  269. Guillon, B.: Two-wayness: automata and transducers. Ph.D. thesis, Université Paris Diderot -Università degli studi di Milano, Paris (2016)
  270. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140-162 (2003)
  271. Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping automata. J. Comput. Syst. Sci. 78(2), 537-558 (2012)
  272. Lombardy, S.: Two-way representations and weighted automata. RAIRO -Theor. Inf. Appl. 50(4), 331-350 (2016)
  273. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theor. Comput. Sci. 332(1-3), 141-177 (2005)
  274. Pighizzini, G.: Two-way finite automata: old and recent results. Fundam. Inform. 126(2-3), 225-246 (2013)
  275. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)
  276. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Proceedings of STOC, pp. 275-286. ACM (1978) References
  277. Chomsky, N.: Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118-161 (1963)
  278. Flajolet, P.: Ambiguity and transcendence. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 179-188. Springer, Heidelberg (1985). doi:10.1007/BFb0015743
  279. Flajolet, P.: Analytic models and ambiguity of context-free languages. Theor. Com- put. Sci. 49, 283-309 (1987)
  280. Stanley, R.: Differentiably finite power series. Eur. J. Combin. 1(2), 175-188 (1980)
  281. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321-368 (1990)
  282. Bertoni, A., Massazza, P., Sabadini, N.: Holonomic generating functions and con- text free languages. Int. J. Found. Comput. Sci. 3(2), 181-191 (1992)
  283. Massazza, P.: Holonomic functions and their relation to linearly constrained lan- guages. RAIRO-Theor. Inf. Appl. 27(2), 149-161 (1993)
  284. Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical report, Dep. of Computer Science, Univ. of Freiburg (2002)
  285. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681-696. Springer, Heidelberg (2003). doi:10.1007/3-540-45061-0 54
  286. Cadilhac, M., Finkel, A., McKenzie, P.: Affine parikh automata. RAIRO-Theor. Inf. Appl. 46(4), 511-545 (2012)
  287. Castiglione, G., Massazza, P.: On a class of languages with holonomic generating functions. Theor. Comput. Sci. 658, 74-84 (2017)
  288. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116-133 (1978)
  289. Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 388-399. Springer, Cham (2015). doi:10.1007/978-3-319-17142-5 33
  290. Valiant, L., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3), 340-350 (1975) References
  291. Ananichev, D., Volkov, M.: Synchronizing monotonic automata. Theor. Comput. Sci. 327(3), 225-239 (2004)
  292. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61-67. Springer, Cham (2014). doi:10.1007/978-3-319-09698-8 6
  293. Bondar, E.A., Volkov, M.V.: Completely reachable automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 1-17. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9 1
  294. Synchronization Problems in Automata Without Non-trivial Cycles 199
  295. Brzozowski, J., Fich, F.E.: Languages of R-trivial monoids. J. Comput. Syst. Sci. 20(1), 32-49 (1980)
  296. Cardoso, A.: The Černý Conjecture and Other Synchronization Problems. Ph.D. thesis. University of Porto, Portugal (2014)
  297. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)
  298. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500-510 (1990)
  299. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 243-255. Springer, Heidelberg (2015). doi:10.1007/ 978-3-662-48057-1 19
  300. Gerencsér, B., Gusev, V.V., Jungers, R.M.: Primitive sets of nonnegative matrices and synchronizing automata. CoRR abs/1602.07556 (2016)
  301. Jirásková, G., Masopust, T.: On the state and computational complexity of the reverse of acyclic minimal dfas. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 229-239. Springer, Heidelberg (2012). doi:10.1007/ 978-3-642-31606-7 20
  302. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pp. 254-266 (1977)
  303. Martyugin, P.V.: Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 288-302. Springer, Heidelberg (2010). doi:10.1007/ 978-3-642-13182-0 27
  304. Mycielski, J.: Sur le coloriage des graphs. Colloquium Mathematicae 3(2), 161-162 (1955)
  305. Natarajan, B.K.: An algorithmic approach to the automated design of parts orien- ters. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pp. 132-142 (1986)
  306. Pin, J. É.: On two combinatorial problems arising from automata theory. Ann. Discrete Math. 17, 535-548 (1983)
  307. Rystsov, I.K.: Rank of a finite automaton. Cybern. Syst. Anal. 28(3), 323-328 (1992)
  308. Rystsov, I.K.: Polynomial complete problems in automata theory. Inform. Process. Lett. 16(3), 147-151 (1983)
  309. Rystsov, I.K.: Reset words for commutative and solvable automata. Theor. Com- put. Sci. 172(1), 273-279 (1997)
  310. Ryzhikov, A.: Approximating the maximum number of synchronizing states in automata. CoRR abs/1608.00889 (2016)
  311. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5-33. Springer, Heidelberg (2005). doi:10.1007/ 11498490 2
  312. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, 3rd edn. (2012)
  313. Szyku la, M.: Improving the upper bound the length of the shortest reset words. CoRR abs/1702.05455 (2017)
  314. Trahtman, A.N.: The Cerný conjecture for aperiodic automata. Discrete Math. Theor. Comput. Sci. 9(2), 3-10 (2007)
  315. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)
  316. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11-27. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88282-4 4
  317. Vorel, V.: Subset synchronization and careful synchronization of binary finite automata. Int. J. Found. Comput. Sci. 27(5), 557-578 (2016)
  318. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(6), 103-128 (2007) References
  319. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)
  320. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71-89 (2010)
  321. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sci. 24(6), 691-708 (2013)
  322. Brzozowski, J.A., Li, B.: Syntactic complexity of R-and J-trivial languages. Int. J. Found. Comput. Sci. 16(3), 547-563 (2005)
  323. Brzozowski, J.A., Li, B., Liu, D.: Syntactic complexities of six classes of star-free languages. J. Autom. Lang. Comb. 17, 83-105 (2012)
  324. Brzozowski, J.A., Li, B., Ye, Y.: Syntactic complexity of prefix-suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37-53 (2012)
  325. Brzozowski, J., Szyku la, M.: Upper bounds on syntactic complexity of left and two-sided ideals. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 13-24. Springer, Cham (2014). doi:10.1007/978-3-319-09698-8 2
  326. Brzozowski, J.A., Szyku la, M.: Large aperiodic semigroups. Int. J. Found. Comput. Sci. 26(07), 913-931 (2015)
  327. Brzozowski, J., Szyku la, M.: Upper bound on syntactic complexity of suffix-free languages. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 33-45.
  328. Springer, Cham (2015). doi:10.1007/978-3-319-19225-3 3
  329. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13-27 (2014)
  330. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117-128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22321-1 11
  331. Ferens, R., Szyku la, M.: Complexity of bifix-free languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS, vol. 10329, pp. 76-88. Springer, Cham (2017)
  332. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. 327, 319-347 (2004)
  333. Iván, S., Nagy-György, J.: On nonpermutational transformation semigroups with an application to syntactic complexity (2014). http://arxiv.org/abs/1402.7289
  334. McNaughton, R., Papert, S.A.: Counter-free automata (M.I.T. Research Mono- graph No. 65). The MIT Press (1971)
  335. Myhill, J.: Finite automata and representation of events. Wright Air Development Center Technical report, pp. 57-624 (1957)
  336. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Volume 1 Word, Language, Grammar, pp. 679-746. Springer, Heidelberg (1997)
  337. Szyku la, M., Wittnebel, J.: Syntactic complexity of bifix-free languages (2017). http://arxiv.org/abs/1604.06936
  338. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221-234 (2001)