Academia.eduAcademia.edu

Outline

automata, a Hybrid System for Computational

2003

Abstract

We present a system that performs computations on finite state machines, syntactic semigroups, and one-dimensional cellular automata.

References (14)

  1. M.-P. Beal and D. Perrin. Symbolic dynamics and finite automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 2, chapter 10. Springer Verlag, 1997.
  2. R. Fischer. Sofic systems and graphs. Monatshefte für Mathematik, 80:179-186, 1975.
  3. G. Glass and B. Schuchert. The STL <Primer>. Prentice Hall, 1996.
  4. D. Kozen. Lower bounds for natural proof systems. In Proc. 18-th Ann. Symp. on Foundations of Computer Science, pages 254-266. IEEE Computer Society, 1977.
  5. D. Lind and B. Marcus. Introduction to Symbolic Dynamics and Coding. Cam- bridge University Press, 1995.
  6. R. Raymond, D. Wood, and S. Yu. First International Workshop on Implementing Automata, volume 1260 of Lecture Notes in CS. Springer Verlag, 1997.
  7. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.
  8. K. Sutner. Finite state machines and syntactic semigroups. The Mathematica Journal, 2(1):78-87, 1992.
  9. K. Sutner. Implementing finite state machines. In N. Dean and G. Shannon, editors, Computational Support for Discrete Mathematics, volume 15, pages 347- 365. DIMACS, 1994.
  10. K. Sutner. Linear cellular automata and Fischer automata. Parallel Computing, 23(11):1613-1634, 1997.
  11. K. Sutner. σ-automata and Chebyshev polynomials. Theoretical Computer Science, 230:49-73, 2000.
  12. K. Sutner. The size of power automata. In J. Sgall, Ales Pultr, and Petr Kolman, editors, Mathematical Foundations of Computer Science, volume 2136 of SLNCS, pages 666-677, 2001.
  13. K. Sutner. Decomposition of additive CA. Submitted to Complex Systems, 2002.
  14. S. Wolfram. The Mathematica Book. Wolfram Media, Cambridge UP, 4th edition, 1999.