Wafer-Scale Integration of Graphene-Based Photonic Devices
ACS Nano
https://doi.org/10.1021/ACSNANO.0C09758Abstract
Graphene and related materials can lead to disruptive advances in next-generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (≥5000 cm 2 V −1 s −1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapor deposition (CVD) of single layer graphene (SLG) matrices comprising up to ∼12000 individual single crystals, grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ∼80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ∼5000 cm 2 V −1 s −1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ∼0.25, 0.45, 0.75, 1 dB V −1 for device lengths ∼30, 60, 90, 120 μm. The data rate is up to 20 Gbps. Encapsulation with single-layer hexagonal boron nitride (hBN) is used to protect SLG during plasma-enhanced CVD of Si 3 N 4 , ensuring reproducible device performance. The processes are compatible with full automation. This paves the way for large scale production of graphenebased photonic devices.
References (128)
- Graphene Labs, Istituto Italiano di Tecnologia, 16163
- Genova, Italy; orcid.org/0000-0002-8134-7633; Email: camilla.coletti@iit.it Marco Romagnoli -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy; INPHOTEC, 56124 Pisa, Italy; CamGraPhiC, 56124 Pisa, Italy; Email: mromagnoli@cnit.it Authors Marco A. Giambra -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy; INPHOTEC, 56124 Pisa, Italy; Center for Nanotechnology Innovation @NEST - Istituto Italiano di Tecnologia, I-56127 Pisa, Italy; orcid.org/0000-0002-1566-2395
- Genova, Italy; orcid.org/0000-0001-6263-4250
- Genova, Italy; NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy; orcid.org/0000- 0003-4289-907X
- Simone Marconi -Photonic Networks and Technologies Lab, Tecip Institute, Scuola Superiore Sant'Anna, 56124 Pisa, Italy Alberto Montanaro -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy Filippo Fabbri -Center for Nanotechnology Innovation @ NEST -Istituto Italiano di Tecnologia, I-56127 Pisa, Italy; Graphene Labs, Istituto Italiano di Tecnologia, 16163
- Genova, Italy; NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy; orcid.org/0000- 0003-1142-0441
- Vito Sorianello -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy
- Andrea C. Ferrari -Cambridge Graphene Centre, Cambridge University, Cambridge, U.K.; orcid.org/0000-0003-0907- 9993 Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.0c09758
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611-622.
- Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D'Errico, A.; Ferrari, A. C. Graphene-Based Integrated Photonics for Next- Generation Datacom and Telecom. Nat. Rev. Mater. 2018, 3, 392- 414.
- Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780-793.
- Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhanen, T.; Morpurgo, A.; et al. Science and Technology Roadmap for Graphene, Related Two- Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7, 4598- 4810.
- Romagnoli, M. Graphene Photonics for Optical Communica- tions. In Optical Fiber Communication Conference (OFC); OSA: Washington, DC, 2019; p M3D.3.
- Romagnoli, M. Graphene Photonics for Optical Communica- tions. In Broadband Access Communication Technologies XIII; Dingel, B. B., Tsukamoto, K., Mikroulis, S., Eds.; SPIE, 2019; p 1.
- Cisco. Cisco Annual Internet Report (2018-2023). https://
- Evans, D. The Internet of Things How the Next Evolution of the Internet Is Changing Everything. https://www.cisco.com/c/dam/en_ us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed 2011-04).
- Next Generation Mobile Networks Alliance. Next Generation Mobile 5G White Paper. https://www.ngmn.org/wp-content/ uploads/NGMN_5G_White_Paper_V1_0.pdf (accessed 2015-02- 17).
- Ericsson Mobility Report. Available at: https://www.ericsson. com/49da93/assets/local/mobility-report/documents/2020/ june2020-ericsson-mobility-report.pdf (accessed 2020-03).
- How the Internet Can Cope with the Explosion of Demand for "Right Now" Data during the Coronavirus Outbreak https:// spectrum.ieee.org/tech-talk/telecom/internet/everyone-staying- home-because-of-covid19-is-targeting-the-internets-biggest-weak-spot (accessed 2020-03-23).
- 2020 Ethernet Roadmap https://ethernetalliance.org/ technology/2020-roadmap/ (accessed 2020-02-14).
- Doerr, C. R. Silicon Photonic Integration in Telecommunica- tions. Front. Phys. 2015, 3, 3.
- Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling Strategies for Silicon Photonics Integrated Chips. Photonics Res. 2019, 7, 201.
- Selvaraja, S. K.; De Heyn, P.; Winroth, G.; Ong, P.; Lepage, G.; Cailler, C.; Rigny, A.; Bourdelle, K. K.; Bogaerts, W.; Van Thourhout, D.; Van Campenhout, J.; Absil, P. Highly Uniform and Low-Loss Passive Silicon Photonics Devices Using a 300mm CMOS Platform. In Optical Fiber Communication Conference; OSA: Washington, DC, 2014; p Th2A.33.
- Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications; Oxford series in electrical and computer engineering; Oxford University Press: New York, 2007. (18) PSM4MSAGroup. 100G PSM4MSA Specification. http://
- Petrilla, J.; Cole, C.; King, J.; Lewis, D.; Hiramoto, K.; Tsumura, E. 100G CWDM4MSA Specifications. http://www.cwdm4- msa.org/files/CWDM4_MSA_Technical_Spec_1p0.pdf (accessed 2014-08-27).
- Miller, D. Device Requirements for Optical Interconnects to Silicon Chips. Proc. IEEE 2009, 97, 1166-1185.
- Yoo, S. J. B. The Role of Photonics in Future Computing and Data Centers. IEICE Trans. Commun. 2014, E97.B, 1272-1280.
- Tekin, T.; Pleros, N.; Pitwon, R.; Hakansson, A. Optical Interconnects for Data Centers; Woodhead Publishing: Cambridge, 2016.
- Colinge, J.-P. Silicon-on-Insulator Technology: Materials to VLSI;
- Springer-Verlag: New York, 2004.
- Letal, G.; Prosyk, K.; Millett, R.; Macquistan, D.; Paquet, S.; Thibault-Maheu, O.; Gagné, J.; Fortin, P.; Dowlatshahi, R.; Rioux, B.; SpringThorpe, T.; Hisko, M.; Ma, R.; Woods, I. Low Loss InP C- Band IQ Modulator with 40 GHz Bandwidth and 1.5V Vπ. In 2015 Optical Fiber Communications Conference and Exhibition (OFC) 2015, 1-3.
- Doerr, C.; Chen, L. Silicon Photonics in Optical Coherent Systems. Proc. IEEE 2018, 106, 2291-2301.
- Witzens, J. High-Speed Silicon Photonics Modulators. Proc. IEEE 2018, 106, 2158-2182.
- Valdar, A.; Morfett, I. Understanding Telecommunications Business; Telecommunications; Institution of Engineering and Tech- nology: Stevenage, UK, 2015.
- Tong, Y.; Hu, Z.; Wu, X.; Liu, S.; Chang, L.; Netherton, A.; Chan, C.-K.; Bowers, J. E.; Tsang, H. K. An Experimental Demonstration of 160-Gbit/s PAM-4 Using a Silicon Micro-Ring Modulator. IEEE Photonics Technol. Lett. 2020, 32, 125-128.
- Verbist, J.; Verplaetse, M.; Srinivasan, S. A.; Van Kerrebrouck, J.; De Heyn, P.; Absil, P.; De Keulenaer, T.; Pierco, R.; Vyncke, A.; Torfs, G.; Yin, X.; Roelkens, G.; Van Campenhout, J.; Bauwelinck, J. Real-Time 100 Gb/s NRZ and EDB Transmission with a GeSi Electroabsorption Modulator for Short-Reach Optical Interconnects. J. Lightwave Technol. 2018, 36, 90-96.
- Wang, B.; Huang, Q.; Chen, K.; Zhang, J.; Kurczveil, G.; Liang, D.; Palermo, S.; Tan, M. R. T.; Beausoleil, R. G.; He, S. Modulation on Silicon for Datacom: Past, Present, And Future (Invited Review). Prog. Electromagn. Res. 2019, 166, 119-145.
- Smit, M.; Williams, K.; van der Tol, J. Past, Present, and Future of InP-Based Photonic Integration. APL Photonics 2019, 4, 050901.
- Yole Developpement. Silicon Photonics and Photonic Integrated Circuits 2019 by Yole Developpement. https://www. slideshare.net/Yole_Developpement/silicon-photonics-and-photonic- integrated-circuits-2019-by-yole-dveloppement (accessed 2019-04- 25). (33) Comparison between InP and Silicon Photonics. https://www. phiconference.com/market/comparison-between-inp-and-silicon- photonics/ (accessed 2015-06-17).
- Sorianello, V.; Midrio, M.; Romagnoli, M. Design Optimization of Single and Double Layer Graphene Phase Modulators in SOI. Opt. Express 2015, 23, 6478.
- Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-Mobility Graphene Devices from Chemical Vapor Depo- sition on Reusable Copper. Sci. Adv. 2015, 1, No. e1500222.
- Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A. Cleaning Interfaces in Layered Materials Heterostructures. Nat. Commun. 2018, 9, 5387.
- De Fazio, D.; Purdie, D. G.; Ott, A. K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F. H. L.; Hofmann, S.; Goykhman, I.; Ferrari, A. C.; Lombardo, A. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano 2019, 13, 8926-8935.
- Pezzini, S.; Misěikis, V.; Pace, S.; Rossella, F.; Watanabe, K.; Taniguchi, T.; Coletti, C. High-Quality Electrical Transport Using Scalable CVD Graphene. 2D Mater. 2020, 7, 041003.
- Banszerus, L.; Sohier, T.; Epping, A.; Winkler, F.; Libisch, F.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Muller-Caspary, K.; Marzari, N.; Mauri, F.; Beschoten, B.; Stampfer, C. Extraordinary High Room- Temperature Carrier Mobility in Graphene-WSe$_2$ Heterostruc- tures. arXiv:1909.09523 https://arxiv.org/abs/1909.09523 (accessed 2020-05-12).
- Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic Transport Exceeding 28 Mm in CVD Grown Graphene. Nano Lett. 2016, 16, 1387-1391.
- Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666.
- Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. R. Gate-Variable Optical Transitions in Graphene. Science 2008, 320, 206-209.
- Stauber, T.; Peres, N. M. R.; Geim, A. K. Optical Conductivity of Graphene in the Visible Region of the Spectrum. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 085432.
- Li, H.; Anugrah, Y.; Koester, S. J.; Li, M. Optical Absorption in Graphene Integrated on Silicon Waveguides. Appl. Phys. Lett. 2012, 101, 111110.
- Liu, M.; Yin, X.; Zhang, X. Double-Layer Graphene Optical Modulator. Nano Lett. 2012, 12, 1482-1485.
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A Graphene-Based Broadband Optical Modulator. Nature 2011, 474, 64-67.
- Giambra, M. A.; Sorianello, V.; Miseikis, V.; Marconi, S.; Montanaro, A.; Galli, P.; Pezzini, S.; Coletti, C.; Romagnoli, M. High- Speed Double Layer Graphene Electro-Absorption Modulator on SOI Waveguide. Opt. Express 2019, 27, 20145-20155.
- Midrio, M.; Galli, P.; Romagnoli, M.; Kimerling, L. C.; Michel, J. Graphene-Based Optical Phase Modulation of Waveguide Trans- verse Electric Modes. Photonics Res. 2014, 2, A34.
- Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M. Graphene-Silicon Phase Modulators with Gigahertz Bandwidth. Nat. Photonics 2018, 12, 40-44.
- Cassese, T.; Giambra, M. A.; Sorianello, V.; De Angelis, G.; Midrio, M.; Pantouvaki, M.; Van Campenhout, J.; Asselberghs, I.; Huyghebaert, C.; D'Errico, A.; Romagnoli, M. Capacitive Actuation and Switching of Add-Drop Graphene-Silicon Micro-Ring Filters. Photonics Res. 2017, 5, 762.
- Song, J. C. W. W. C. W.; Rudner, M. S. S.; Marcus, C. M. M.; Levitov, L. S. S. Hot Carrier Transport and Photocurrent Response in Graphene. Nano Lett. 2011, 11, 4688-4692.
- Muench, J. E.; Ruocco, A.; Giambra, M. A.; Miseikis, V.; Zhang, D.; Wang, J.; Watson, H. F. Y.; Park, G. C.; Akhavan, S.; Sorianello, V.; Midrio, M.; Tomadin, A.; Coletti, C.; Romagnoli, M.; Ferrari, A. C.; Goykhman, I. Waveguide-Integrated, Plasmonic Enhanced Graphene Photodetectors. Nano Lett. 2019, 19, 7632-7644.
- Shiue, R.-J.; Gao, Y.; Wang, Y.; Peng, C.; Robertson, A. D.; Efetov, D. K.; Assefa, S.; Koppens, F. H. L.; Hone, J.; Englund, D. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. Nano Lett. 2015, 15, 7288-7293.
- Misěikis, V.; Marconi, S.; Giambra, M. A.; Montanaro, A.; Martini, L.; Fabbri, F.; Pezzini, S.; Piccinini, G.; Forti, S.; Terrés, B.; Goykhman, I.; Hamidouche, L.; Legagneux, P.; Sorianello, V.; Ferrari, A. C.; Koppens, F. H. L.; Romagnoli, M.; Coletti, C. Ultrafast, Zero- Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano 2020, 14, 11190-11204.
- Marconi, S.; Giambra, M. A.; Montanaro, A.; Miesǐkis, V.; Soresi, S.; Tirelli, S.; Galli, P.; Buchali, F.; Templ, W.; Coletti, C.; Sorianello, V.; Romagnoli, M. Photo Thermal Effect Graphene Detector Featuring 105 Gbit S-1 NRZ and 120 Gbit s-1 PAM4 Direct Detection. arXiv:2006.01481 https://arxiv.org/abs/2006.01481 (ac- cessed 2020-06-02).
- Phare, C. T.; Daniel Lee, Y.-H.; Cardenas, J.; Lipson, M. Graphene Electro-Optic Modulator with 30 GHz Bandwidth. Nat. Photonics 2015, 9, 511-514.
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Lightwave Technol. 2006, 24, 4600-4615.
- Dakin, J. P., Brown, R. G. W. Handbook of Optoelectronics; CRC Press: Boca Raton, 2017.
- Agrawal, G. P. Lightwave Technology: Components and Devices; John Wiley & Sons: New York, 2004.
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, 2015.
- Li, H. H. Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561-658.
- Horizon 2020 -Work Programme 2016 -2017. https://ec. europa.eu/research/participants/data/ref/h2020/other/wp/2016- 2017/annexes/h2020-wp1617-annex-ga_en.pdf (accessed 2017-04-
- 63) Petrone, N.; Dean, C. R.; Meric, I.; van der Zande, A. M.; Huang, P. Y.; Wang, L.; Muller, D.; Shepard, K. L.; Hone, J. Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene. Nano Lett. 2012, 12, 2751.
- Chen, X.; Wu, B.; Liu, Y. Direct Preparation of High Quality Graphene on Dielectric Substrates. Chem. Soc. Rev. 2016, 45, 2057- 2074.
- Mishra, N.; Forti, S.; Fabbri, F.; Martini, L.; McAleese, C.; Conran, B. R. R.; Whelan, P. R. R.; Shivayogimath, A.; Jessen, B. S. S.; Buß, L.; Falta, J.; Aliaj, I.; Roddaro, S.; Flege, J. I. I.; Bøggild, P.; Teo, K. B. K. B. K.; Coletti, C. Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene. Small 2019, 15, 1904906.
- Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.; Yang, C.-W.; Choi, B. L.; Hwang, S.-W.; Whang, D. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germa- nium. Science 2014, 344, 286-289.
- Lukosius, M.; Dabrowski, J.; Kitzmann, J.; Fursenko, O.; Akhtar, F.; Lisker, M.; Lippert, G.; Schulze, S.; Yamamoto, Y.; Schubert, M. A.; Krause, H. M.; Wolff, A.; Mai, A.; Schroeder, T.; Lupina, G. Metal-Free CVD Graphene Synthesis on 200 mm Ge/ Si(001) Substrates. ACS Appl. Mater. Interfaces 2016, 8, 33786- 33793.
- Scaparro, A. M.; Miseikis, V.; Coletti, C.; Notargiacomo, A.; Pea, M.; De Seta, M.; Di Gaspare, L. Investigating the CVD Synthesis of Graphene on Ge(100): Toward Layer-by-Layer Growth. ACS Appl. Mater. Interfaces 2016, 8, 33083-33090.
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314.
- Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and Processing of Graphene and 2D Crystals. Mater. Today 2012, 15, 564-589.
- Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Ortega, M. M. B.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Bøggild, P.; Bonaccorso, F.; et al. Production and Processing of Graphene and Related Materials. 2D Mater. 2020, 7, 022001.
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
- Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927-9933.
- Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu, Q.; Peng, L.-M.; Bao, X.; Cheng, H.-M. Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum. Nat. Commun. 2012, 3, 699.
- Wang, R.; Whelan, P. R.; Braeuninger-Weimer, P.; Tappertzhofen, S.; Alexander-Webber, J. A.; Van Veldhoven, Z. A.; Kidambi, P. R.; Jessen, B. S.; Booth, T.; Bøggild, P.; Hofmann, S. Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Appl. Mater. Interfaces 2016, 8, 33072-33082.
- Miseikis, V.; Bianco, F.; David, J.; Gemmi, M.; Pellegrini, V.; Romagnoli, M.; Coletti, C. Deterministic Patterned Growth of High- Mobility Large-Crystal Graphene: A Path towards Wafer Scale Integration. 2D Mater. 2017, 4, 021004.
- Sonntag, J.; Li, J.; Plaud, A.; Loiseau, A.; Barjon, J.; Edgar, J. H.; Stampfer, C. Excellent Electronic Transport in Heterostructures of Graphene and Monoisotopic Boron-Nitride Grown at Atmospheric Pressure. 2D Mater. 2020, 7, 031009.
- Shivayogimath, A.; Whelan, P. R.; Mackenzie, D. M. A.; Luo, B.; Huang, D.; Luo, D.; Wang, M.; Gammelgaard, L.; Shi, H.; Ruoff, R. S.; Bøggild, P.; Booth, T. J. Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chem. Mater. 2019, 31, 2328-2336.
- Miseikis, V.; Convertino, D.; Mishra, N.; Gemmi, M.; Mashoff, T.; Heun, S.; Haghighian, N.; Bisio, F.; Canepa, M.; Piazza, V.; Coletti, C. Rapid CVD Growth of Millimetre-Sized Single Crystal Graphene Using a Cold-Wall Reactor. 2D Mater. 2015, 2, 014006. (80) Alexander, K.; George, J. P.; Verbist, J.; Neyts, K.; Kuyken, B.; Van Thourhout, D.; Beeckman, J. Nanophotonic Pockels Modulators on a Silicon Nitride Platform. Nat. Commun. 2018, 9, 3444. (81) Zurrón, O ́.; Picón, A.; Plaja, L. Theory of High-Order Harmonic Generation for Gapless Graphene. New J. Phys. 2018, 20, 053033.
- Mohsin, M.; Schall, D.; Otto, M.; Noculak, A.; Neumaier, D.; Kurz, H. Graphene Based Low Insertion Loss Electro-Absorption Modulator on SOI Waveguide. Opt. Express 2014, 22, 15292.
- Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; Ramanarayan, H.; Magnuson, C. W.; Tutuc, E.; Yakobson, B. I.; McCarty, K. F.; Zhang, Y.-W.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R. S. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 2013, 342, 720-723.
- Kang, S. J.; Kim, B.; Kim, K. S.; Zhao, Y.; Chen, Z.; Lee, G. H.; Hone, J.; Kim, P.; Nuckolls, C. Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs. Adv. Mater. 2011, 23, 3531-3535.
- SYLGARD TM 184 Silicone Elastomer Kit Technical Data Sheet. https://www.dow.com/en-us/document-viewer.html?ramdomVar= 577327118110380375&docPath=/content/dam/dcc/documents/en- us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf (accessed 2019-05-18).
- Polymer Properties Database http://polymerdatabase.com/ polymerphysics/PolymerTgC.html.
- Gao, L.; Ni, G.-X.; Liu, Y.; Liu, B.; Castro Neto, H.; Loh, K. P. Face-to-Face Transfer of Wafer-Scale Graphene Films. Nature 2014, 505, 190-194.
- Kim, M.; Shah, A.; Li, C.; Mustonen, P.; Susoma, J.; Manoocheri, F.; Riikonen, J.; Lipsanen, H. Direct Transfer of Wafer-Scale Graphene Films. 2D Mater. 2017, 4, 035004.
- Zhu, W.; Neumayer, D.; Perebeinos, V.; Avouris, P. Silicon Nitride Gate Dielectrics and Band Gap Engineering in Graphene Layers. Nano Lett. 2010, 10, 3572-3576.
- Khosrofian, J. M.; Garetz, B. A. Measurement of a Gaussian Laser Beam Diameter through the Direct Inversion of Knife-Edge Data. Appl. Opt. 1983, 22, 3406.
- Dwivedi, N.; Ott, A. K.; Sasikumar, K.; Dou, C.; Yeo, R. J.; Narayanan, B.; Sassi, U.; De Fazio, D.; Soavi, G.; Dutta, T.; Sankaranarayanan, S. K. R. S.; Ferrari, A. C.; Bhatia, C. S. Graphene Overcoats for Ultra-High Storage Density Magnetic Media. arXiv:1906.00338, https://arxiv.org/abs/1906.00338 (accessed 2020-05-12).
- Single Layer h-BN (Boron Nitride) Film Grown on Copper Foil: 2" x 1 https://graphene-supermarket.com/Single-layer-h-BN- Boron-Nitride-film-grown-in-copper-foil-2-x-1.html (accessed 2020- 06-15).
- Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401.
- Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235-246.
- Cancado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190. (96) Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Blake, P.; Shen, Z. X.; Hill, E. H.; Novoselov, K. S.; Geim, A. K. On Resonant Scatterers as a Factor Limiting Carrier Mobility in Graphene. Nano Lett. 2010, 10, 3868-3872.
- Chen, J.-H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect Scattering in Graphene. Phys. Rev. Lett. 2009, 102, 236805.
- Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman Fingerprint of Charged Impurities in Graphene. Appl. Phys. Lett. 2007, 91, 233108.
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210-215.
- Basko, D. M.; Piscanec, S.; Ferrari, A. C. Electron-Electron Interactions and Doping Dependence of the Two-Phonon Raman Intensity in Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 165413.
- Bruna, M.; Ott, A. K.; Ijas, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8, 7432-7441.
- Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Gruneisen Parameters, and Sample Orientation. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 205433.
- Yoon, D.; Son, Y. W.; Cheong, H. Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene. Phys. Rev. Lett. 2011, 106, 155502.
- Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Lett. 2012, 12, 617-621.
- Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett. 2004, 93, 1-4.
- Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the Adiabatic Born- Oppenheimer Approximation in Graphene. Nat. Mater. 2007, 6, 198- 201.
- Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum Emission from Hexagonal Boron Nitride Monolayers. Nat. Nanotechnol. 2016, 11, 37-41.
- Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical Separation of Mechanical Strain from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024.
- Neumann, C.; Reichardt, S.; Venezuela, P.; Drogeler, M.; Banszerus, L.; Schmitz, M.; Watanabe, K.; Taniguchi, T.; Mauri, F.; Beschoten, B.; Rotkin, S. V.; Stampfer, C. Raman Spectroscopy as Probe of Nanometre-Scale Strain Variations in Graphene. Nat. Commun. 2015, 6, 8429.
- Couto, N. J. G.; Costanzo, D.; Engels, S.; Ki, D.-K.; Watanabe, K.; Taniguchi, T.; Stampfer, C.; Guinea, F.; Morpurgo, A. F. Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Phys. Rev. X 2014, 4, 041019.
- Berger, H. H. Models for Contacts to Planar Devices. Solid- State Electron. 1972, 15, 145-158.
- Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.; Dean, C. R. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614-617.
- Falkovsky, L. A. Optical Properties of Graphene. J. Phys. Conf. Ser. 2008, 129, 012004.
- Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a High Mobility Dual-Gated Graphene Field-Effect Transistor with Al2O3 Dielectric. Appl. Phys. Lett. 2009, 94, 062107.
- Huard, B.; Stander, N.; Sulpizio, J. A.; Goldhaber-Gordon, D. Evidence of the Role of Contacts on the Observed Electron-Hole Asymmetry in Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 121402.
- Lee, E. J.; Balasubramanian, K.; Weitz, R. T.; BurkHard, M.; Kern, K. Contact and Edge Effects in Graphene Devices. Nat. Nanotechnol. 2008, 3, 486-490.
- Valdes, L. Resistivity Measurements on Germanium for Transistors. Proc. IRE 1954, 42, 420-427.
- Hanson, G. W. Dyadic Green's Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene. J. Appl. Phys. 2008, 103, 064302.
- Alexander, C. K.; Sadiku, M. Fundamentals of Electric Circuits; McGraw-Hill: London, UK, 2008.
- Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the Quantum Capacitance of Graphene. Nat. Nanotechnol. 2009, 4, 505-509.
- Razavi, B. Design of Integrated Circuits for Optical Communications; John Wiley & Sons: New York, NY, 2012.
- Pitris, S.; Moralis-Pegios, M.; Alexoudi, T.; Fotiadis, K.; Ban, Y.; Heyn, P.; De Campenhout, J.; Van Pleros, N. A 400 Gb/s O-Band WDM (8 × 50 Gb/s) Silicon Photonic Ring Modulator-Based Transceiver. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 2020, 1-3.
- Chaisakul, P.; Vakarin, V.; Frigerio, J.; Chrastina, D.; Isella, G.; Vivien, L.; Marris-Morini, D. Recent Progress on Ge/SiGe Quantum Well Optical Modulators, Detectors, and Emitters for Optical Interconnects. Photonics 2019, 6, 24.
- Heebner, J.; Grover, R.; Ibrahim, T. Optical Microresonators; Springer-Verlag: New York, 2008.
- Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 2012, 12, 161-166.