Academia.eduAcademia.edu

Outline

Wafer-Scale Integration of Graphene-Based Photonic Devices

ACS Nano

https://doi.org/10.1021/ACSNANO.0C09758

Abstract

Graphene and related materials can lead to disruptive advances in next-generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (≥5000 cm 2 V −1 s −1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapor deposition (CVD) of single layer graphene (SLG) matrices comprising up to ∼12000 individual single crystals, grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ∼80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ∼5000 cm 2 V −1 s −1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ∼0.25, 0.45, 0.75, 1 dB V −1 for device lengths ∼30, 60, 90, 120 μm. The data rate is up to 20 Gbps. Encapsulation with single-layer hexagonal boron nitride (hBN) is used to protect SLG during plasma-enhanced CVD of Si 3 N 4 , ensuring reproducible device performance. The processes are compatible with full automation. This paves the way for large scale production of graphenebased photonic devices.

References (128)

  1. Graphene Labs, Istituto Italiano di Tecnologia, 16163
  2. Genova, Italy; orcid.org/0000-0002-8134-7633; Email: camilla.coletti@iit.it Marco Romagnoli -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy; INPHOTEC, 56124 Pisa, Italy; CamGraPhiC, 56124 Pisa, Italy; Email: mromagnoli@cnit.it Authors Marco A. Giambra -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy; INPHOTEC, 56124 Pisa, Italy; Center for Nanotechnology Innovation @NEST - Istituto Italiano di Tecnologia, I-56127 Pisa, Italy; orcid.org/0000-0002-1566-2395
  3. Genova, Italy; orcid.org/0000-0001-6263-4250
  4. Genova, Italy; NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy; orcid.org/0000- 0003-4289-907X
  5. Simone Marconi -Photonic Networks and Technologies Lab, Tecip Institute, Scuola Superiore Sant'Anna, 56124 Pisa, Italy Alberto Montanaro -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy Filippo Fabbri -Center for Nanotechnology Innovation @ NEST -Istituto Italiano di Tecnologia, I-56127 Pisa, Italy; Graphene Labs, Istituto Italiano di Tecnologia, 16163
  6. Genova, Italy; NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy; orcid.org/0000- 0003-1142-0441
  7. Vito Sorianello -Photonic Networks and Technologies Lab, CNIT, 56124 Pisa, Italy
  8. Andrea C. Ferrari -Cambridge Graphene Centre, Cambridge University, Cambridge, U.K.; orcid.org/0000-0003-0907- 9993 Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.0c09758
  9. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611-622.
  10. Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D'Errico, A.; Ferrari, A. C. Graphene-Based Integrated Photonics for Next- Generation Datacom and Telecom. Nat. Rev. Mater. 2018, 3, 392- 414.
  11. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780-793.
  12. Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhanen, T.; Morpurgo, A.; et al. Science and Technology Roadmap for Graphene, Related Two- Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7, 4598- 4810.
  13. Romagnoli, M. Graphene Photonics for Optical Communica- tions. In Optical Fiber Communication Conference (OFC); OSA: Washington, DC, 2019; p M3D.3.
  14. Romagnoli, M. Graphene Photonics for Optical Communica- tions. In Broadband Access Communication Technologies XIII; Dingel, B. B., Tsukamoto, K., Mikroulis, S., Eds.; SPIE, 2019; p 1.
  15. Cisco. Cisco Annual Internet Report (2018-2023). https://
  16. Evans, D. The Internet of Things How the Next Evolution of the Internet Is Changing Everything. https://www.cisco.com/c/dam/en_ us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed 2011-04).
  17. Next Generation Mobile Networks Alliance. Next Generation Mobile 5G White Paper. https://www.ngmn.org/wp-content/ uploads/NGMN_5G_White_Paper_V1_0.pdf (accessed 2015-02- 17).
  18. Ericsson Mobility Report. Available at: https://www.ericsson. com/49da93/assets/local/mobility-report/documents/2020/ june2020-ericsson-mobility-report.pdf (accessed 2020-03).
  19. How the Internet Can Cope with the Explosion of Demand for "Right Now" Data during the Coronavirus Outbreak https:// spectrum.ieee.org/tech-talk/telecom/internet/everyone-staying- home-because-of-covid19-is-targeting-the-internets-biggest-weak-spot (accessed 2020-03-23).
  20. 2020 Ethernet Roadmap https://ethernetalliance.org/ technology/2020-roadmap/ (accessed 2020-02-14).
  21. Doerr, C. R. Silicon Photonic Integration in Telecommunica- tions. Front. Phys. 2015, 3, 3.
  22. Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling Strategies for Silicon Photonics Integrated Chips. Photonics Res. 2019, 7, 201.
  23. Selvaraja, S. K.; De Heyn, P.; Winroth, G.; Ong, P.; Lepage, G.; Cailler, C.; Rigny, A.; Bourdelle, K. K.; Bogaerts, W.; Van Thourhout, D.; Van Campenhout, J.; Absil, P. Highly Uniform and Low-Loss Passive Silicon Photonics Devices Using a 300mm CMOS Platform. In Optical Fiber Communication Conference; OSA: Washington, DC, 2014; p Th2A.33.
  24. Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications; Oxford series in electrical and computer engineering; Oxford University Press: New York, 2007. (18) PSM4MSAGroup. 100G PSM4MSA Specification. http://
  25. Petrilla, J.; Cole, C.; King, J.; Lewis, D.; Hiramoto, K.; Tsumura, E. 100G CWDM4MSA Specifications. http://www.cwdm4- msa.org/files/CWDM4_MSA_Technical_Spec_1p0.pdf (accessed 2014-08-27).
  26. Miller, D. Device Requirements for Optical Interconnects to Silicon Chips. Proc. IEEE 2009, 97, 1166-1185.
  27. Yoo, S. J. B. The Role of Photonics in Future Computing and Data Centers. IEICE Trans. Commun. 2014, E97.B, 1272-1280.
  28. Tekin, T.; Pleros, N.; Pitwon, R.; Hakansson, A. Optical Interconnects for Data Centers; Woodhead Publishing: Cambridge, 2016.
  29. Colinge, J.-P. Silicon-on-Insulator Technology: Materials to VLSI;
  30. Springer-Verlag: New York, 2004.
  31. Letal, G.; Prosyk, K.; Millett, R.; Macquistan, D.; Paquet, S.; Thibault-Maheu, O.; Gagné, J.; Fortin, P.; Dowlatshahi, R.; Rioux, B.; SpringThorpe, T.; Hisko, M.; Ma, R.; Woods, I. Low Loss InP C- Band IQ Modulator with 40 GHz Bandwidth and 1.5V Vπ. In 2015 Optical Fiber Communications Conference and Exhibition (OFC) 2015, 1-3.
  32. Doerr, C.; Chen, L. Silicon Photonics in Optical Coherent Systems. Proc. IEEE 2018, 106, 2291-2301.
  33. Witzens, J. High-Speed Silicon Photonics Modulators. Proc. IEEE 2018, 106, 2158-2182.
  34. Valdar, A.; Morfett, I. Understanding Telecommunications Business; Telecommunications; Institution of Engineering and Tech- nology: Stevenage, UK, 2015.
  35. Tong, Y.; Hu, Z.; Wu, X.; Liu, S.; Chang, L.; Netherton, A.; Chan, C.-K.; Bowers, J. E.; Tsang, H. K. An Experimental Demonstration of 160-Gbit/s PAM-4 Using a Silicon Micro-Ring Modulator. IEEE Photonics Technol. Lett. 2020, 32, 125-128.
  36. Verbist, J.; Verplaetse, M.; Srinivasan, S. A.; Van Kerrebrouck, J.; De Heyn, P.; Absil, P.; De Keulenaer, T.; Pierco, R.; Vyncke, A.; Torfs, G.; Yin, X.; Roelkens, G.; Van Campenhout, J.; Bauwelinck, J. Real-Time 100 Gb/s NRZ and EDB Transmission with a GeSi Electroabsorption Modulator for Short-Reach Optical Interconnects. J. Lightwave Technol. 2018, 36, 90-96.
  37. Wang, B.; Huang, Q.; Chen, K.; Zhang, J.; Kurczveil, G.; Liang, D.; Palermo, S.; Tan, M. R. T.; Beausoleil, R. G.; He, S. Modulation on Silicon for Datacom: Past, Present, And Future (Invited Review). Prog. Electromagn. Res. 2019, 166, 119-145.
  38. Smit, M.; Williams, K.; van der Tol, J. Past, Present, and Future of InP-Based Photonic Integration. APL Photonics 2019, 4, 050901.
  39. Yole Developpement. Silicon Photonics and Photonic Integrated Circuits 2019 by Yole Developpement. https://www. slideshare.net/Yole_Developpement/silicon-photonics-and-photonic- integrated-circuits-2019-by-yole-dveloppement (accessed 2019-04- 25). (33) Comparison between InP and Silicon Photonics. https://www. phiconference.com/market/comparison-between-inp-and-silicon- photonics/ (accessed 2015-06-17).
  40. Sorianello, V.; Midrio, M.; Romagnoli, M. Design Optimization of Single and Double Layer Graphene Phase Modulators in SOI. Opt. Express 2015, 23, 6478.
  41. Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-Mobility Graphene Devices from Chemical Vapor Depo- sition on Reusable Copper. Sci. Adv. 2015, 1, No. e1500222.
  42. Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A. Cleaning Interfaces in Layered Materials Heterostructures. Nat. Commun. 2018, 9, 5387.
  43. De Fazio, D.; Purdie, D. G.; Ott, A. K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F. H. L.; Hofmann, S.; Goykhman, I.; Ferrari, A. C.; Lombardo, A. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano 2019, 13, 8926-8935.
  44. Pezzini, S.; Misěikis, V.; Pace, S.; Rossella, F.; Watanabe, K.; Taniguchi, T.; Coletti, C. High-Quality Electrical Transport Using Scalable CVD Graphene. 2D Mater. 2020, 7, 041003.
  45. Banszerus, L.; Sohier, T.; Epping, A.; Winkler, F.; Libisch, F.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Muller-Caspary, K.; Marzari, N.; Mauri, F.; Beschoten, B.; Stampfer, C. Extraordinary High Room- Temperature Carrier Mobility in Graphene-WSe$_2$ Heterostruc- tures. arXiv:1909.09523 https://arxiv.org/abs/1909.09523 (accessed 2020-05-12).
  46. Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic Transport Exceeding 28 Mm in CVD Grown Graphene. Nano Lett. 2016, 16, 1387-1391.
  47. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666.
  48. Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. R. Gate-Variable Optical Transitions in Graphene. Science 2008, 320, 206-209.
  49. Stauber, T.; Peres, N. M. R.; Geim, A. K. Optical Conductivity of Graphene in the Visible Region of the Spectrum. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 085432.
  50. Li, H.; Anugrah, Y.; Koester, S. J.; Li, M. Optical Absorption in Graphene Integrated on Silicon Waveguides. Appl. Phys. Lett. 2012, 101, 111110.
  51. Liu, M.; Yin, X.; Zhang, X. Double-Layer Graphene Optical Modulator. Nano Lett. 2012, 12, 1482-1485.
  52. Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A Graphene-Based Broadband Optical Modulator. Nature 2011, 474, 64-67.
  53. Giambra, M. A.; Sorianello, V.; Miseikis, V.; Marconi, S.; Montanaro, A.; Galli, P.; Pezzini, S.; Coletti, C.; Romagnoli, M. High- Speed Double Layer Graphene Electro-Absorption Modulator on SOI Waveguide. Opt. Express 2019, 27, 20145-20155.
  54. Midrio, M.; Galli, P.; Romagnoli, M.; Kimerling, L. C.; Michel, J. Graphene-Based Optical Phase Modulation of Waveguide Trans- verse Electric Modes. Photonics Res. 2014, 2, A34.
  55. Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M. Graphene-Silicon Phase Modulators with Gigahertz Bandwidth. Nat. Photonics 2018, 12, 40-44.
  56. Cassese, T.; Giambra, M. A.; Sorianello, V.; De Angelis, G.; Midrio, M.; Pantouvaki, M.; Van Campenhout, J.; Asselberghs, I.; Huyghebaert, C.; D'Errico, A.; Romagnoli, M. Capacitive Actuation and Switching of Add-Drop Graphene-Silicon Micro-Ring Filters. Photonics Res. 2017, 5, 762.
  57. Song, J. C. W. W. C. W.; Rudner, M. S. S.; Marcus, C. M. M.; Levitov, L. S. S. Hot Carrier Transport and Photocurrent Response in Graphene. Nano Lett. 2011, 11, 4688-4692.
  58. Muench, J. E.; Ruocco, A.; Giambra, M. A.; Miseikis, V.; Zhang, D.; Wang, J.; Watson, H. F. Y.; Park, G. C.; Akhavan, S.; Sorianello, V.; Midrio, M.; Tomadin, A.; Coletti, C.; Romagnoli, M.; Ferrari, A. C.; Goykhman, I. Waveguide-Integrated, Plasmonic Enhanced Graphene Photodetectors. Nano Lett. 2019, 19, 7632-7644.
  59. Shiue, R.-J.; Gao, Y.; Wang, Y.; Peng, C.; Robertson, A. D.; Efetov, D. K.; Assefa, S.; Koppens, F. H. L.; Hone, J.; Englund, D. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. Nano Lett. 2015, 15, 7288-7293.
  60. Misěikis, V.; Marconi, S.; Giambra, M. A.; Montanaro, A.; Martini, L.; Fabbri, F.; Pezzini, S.; Piccinini, G.; Forti, S.; Terrés, B.; Goykhman, I.; Hamidouche, L.; Legagneux, P.; Sorianello, V.; Ferrari, A. C.; Koppens, F. H. L.; Romagnoli, M.; Coletti, C. Ultrafast, Zero- Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano 2020, 14, 11190-11204.
  61. Marconi, S.; Giambra, M. A.; Montanaro, A.; Miesǐkis, V.; Soresi, S.; Tirelli, S.; Galli, P.; Buchali, F.; Templ, W.; Coletti, C.; Sorianello, V.; Romagnoli, M. Photo Thermal Effect Graphene Detector Featuring 105 Gbit S-1 NRZ and 120 Gbit s-1 PAM4 Direct Detection. arXiv:2006.01481 https://arxiv.org/abs/2006.01481 (ac- cessed 2020-06-02).
  62. Phare, C. T.; Daniel Lee, Y.-H.; Cardenas, J.; Lipson, M. Graphene Electro-Optic Modulator with 30 GHz Bandwidth. Nat. Photonics 2015, 9, 511-514.
  63. Jalali, B.; Fathpour, S. Silicon Photonics. J. Lightwave Technol. 2006, 24, 4600-4615.
  64. Dakin, J. P., Brown, R. G. W. Handbook of Optoelectronics; CRC Press: Boca Raton, 2017.
  65. Agrawal, G. P. Lightwave Technology: Components and Devices; John Wiley & Sons: New York, 2004.
  66. Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, 2015.
  67. Li, H. H. Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561-658.
  68. Horizon 2020 -Work Programme 2016 -2017. https://ec. europa.eu/research/participants/data/ref/h2020/other/wp/2016- 2017/annexes/h2020-wp1617-annex-ga_en.pdf (accessed 2017-04-
  69. 63) Petrone, N.; Dean, C. R.; Meric, I.; van der Zande, A. M.; Huang, P. Y.; Wang, L.; Muller, D.; Shepard, K. L.; Hone, J. Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene. Nano Lett. 2012, 12, 2751.
  70. Chen, X.; Wu, B.; Liu, Y. Direct Preparation of High Quality Graphene on Dielectric Substrates. Chem. Soc. Rev. 2016, 45, 2057- 2074.
  71. Mishra, N.; Forti, S.; Fabbri, F.; Martini, L.; McAleese, C.; Conran, B. R. R.; Whelan, P. R. R.; Shivayogimath, A.; Jessen, B. S. S.; Buß, L.; Falta, J.; Aliaj, I.; Roddaro, S.; Flege, J. I. I.; Bøggild, P.; Teo, K. B. K. B. K.; Coletti, C. Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene. Small 2019, 15, 1904906.
  72. Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.; Yang, C.-W.; Choi, B. L.; Hwang, S.-W.; Whang, D. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germa- nium. Science 2014, 344, 286-289.
  73. Lukosius, M.; Dabrowski, J.; Kitzmann, J.; Fursenko, O.; Akhtar, F.; Lisker, M.; Lippert, G.; Schulze, S.; Yamamoto, Y.; Schubert, M. A.; Krause, H. M.; Wolff, A.; Mai, A.; Schroeder, T.; Lupina, G. Metal-Free CVD Graphene Synthesis on 200 mm Ge/ Si(001) Substrates. ACS Appl. Mater. Interfaces 2016, 8, 33786- 33793.
  74. Scaparro, A. M.; Miseikis, V.; Coletti, C.; Notargiacomo, A.; Pea, M.; De Seta, M.; Di Gaspare, L. Investigating the CVD Synthesis of Graphene on Ge(100): Toward Layer-by-Layer Growth. ACS Appl. Mater. Interfaces 2016, 8, 33083-33090.
  75. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314.
  76. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and Processing of Graphene and 2D Crystals. Mater. Today 2012, 15, 564-589.
  77. Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Ortega, M. M. B.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Bøggild, P.; Bonaccorso, F.; et al. Production and Processing of Graphene and Related Materials. 2D Mater. 2020, 7, 022001.
  78. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
  79. Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927-9933.
  80. Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu, Q.; Peng, L.-M.; Bao, X.; Cheng, H.-M. Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum. Nat. Commun. 2012, 3, 699.
  81. Wang, R.; Whelan, P. R.; Braeuninger-Weimer, P.; Tappertzhofen, S.; Alexander-Webber, J. A.; Van Veldhoven, Z. A.; Kidambi, P. R.; Jessen, B. S.; Booth, T.; Bøggild, P.; Hofmann, S. Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Appl. Mater. Interfaces 2016, 8, 33072-33082.
  82. Miseikis, V.; Bianco, F.; David, J.; Gemmi, M.; Pellegrini, V.; Romagnoli, M.; Coletti, C. Deterministic Patterned Growth of High- Mobility Large-Crystal Graphene: A Path towards Wafer Scale Integration. 2D Mater. 2017, 4, 021004.
  83. Sonntag, J.; Li, J.; Plaud, A.; Loiseau, A.; Barjon, J.; Edgar, J. H.; Stampfer, C. Excellent Electronic Transport in Heterostructures of Graphene and Monoisotopic Boron-Nitride Grown at Atmospheric Pressure. 2D Mater. 2020, 7, 031009.
  84. Shivayogimath, A.; Whelan, P. R.; Mackenzie, D. M. A.; Luo, B.; Huang, D.; Luo, D.; Wang, M.; Gammelgaard, L.; Shi, H.; Ruoff, R. S.; Bøggild, P.; Booth, T. J. Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chem. Mater. 2019, 31, 2328-2336.
  85. Miseikis, V.; Convertino, D.; Mishra, N.; Gemmi, M.; Mashoff, T.; Heun, S.; Haghighian, N.; Bisio, F.; Canepa, M.; Piazza, V.; Coletti, C. Rapid CVD Growth of Millimetre-Sized Single Crystal Graphene Using a Cold-Wall Reactor. 2D Mater. 2015, 2, 014006. (80) Alexander, K.; George, J. P.; Verbist, J.; Neyts, K.; Kuyken, B.; Van Thourhout, D.; Beeckman, J. Nanophotonic Pockels Modulators on a Silicon Nitride Platform. Nat. Commun. 2018, 9, 3444. (81) Zurrón, O ́.; Picón, A.; Plaja, L. Theory of High-Order Harmonic Generation for Gapless Graphene. New J. Phys. 2018, 20, 053033.
  86. Mohsin, M.; Schall, D.; Otto, M.; Noculak, A.; Neumaier, D.; Kurz, H. Graphene Based Low Insertion Loss Electro-Absorption Modulator on SOI Waveguide. Opt. Express 2014, 22, 15292.
  87. Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; Ramanarayan, H.; Magnuson, C. W.; Tutuc, E.; Yakobson, B. I.; McCarty, K. F.; Zhang, Y.-W.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R. S. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 2013, 342, 720-723.
  88. Kang, S. J.; Kim, B.; Kim, K. S.; Zhao, Y.; Chen, Z.; Lee, G. H.; Hone, J.; Kim, P.; Nuckolls, C. Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs. Adv. Mater. 2011, 23, 3531-3535.
  89. SYLGARD TM 184 Silicone Elastomer Kit Technical Data Sheet. https://www.dow.com/en-us/document-viewer.html?ramdomVar= 577327118110380375&docPath=/content/dam/dcc/documents/en- us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf (accessed 2019-05-18).
  90. Polymer Properties Database http://polymerdatabase.com/ polymerphysics/PolymerTgC.html.
  91. Gao, L.; Ni, G.-X.; Liu, Y.; Liu, B.; Castro Neto, H.; Loh, K. P. Face-to-Face Transfer of Wafer-Scale Graphene Films. Nature 2014, 505, 190-194.
  92. Kim, M.; Shah, A.; Li, C.; Mustonen, P.; Susoma, J.; Manoocheri, F.; Riikonen, J.; Lipsanen, H. Direct Transfer of Wafer-Scale Graphene Films. 2D Mater. 2017, 4, 035004.
  93. Zhu, W.; Neumayer, D.; Perebeinos, V.; Avouris, P. Silicon Nitride Gate Dielectrics and Band Gap Engineering in Graphene Layers. Nano Lett. 2010, 10, 3572-3576.
  94. Khosrofian, J. M.; Garetz, B. A. Measurement of a Gaussian Laser Beam Diameter through the Direct Inversion of Knife-Edge Data. Appl. Opt. 1983, 22, 3406.
  95. Dwivedi, N.; Ott, A. K.; Sasikumar, K.; Dou, C.; Yeo, R. J.; Narayanan, B.; Sassi, U.; De Fazio, D.; Soavi, G.; Dutta, T.; Sankaranarayanan, S. K. R. S.; Ferrari, A. C.; Bhatia, C. S. Graphene Overcoats for Ultra-High Storage Density Magnetic Media. arXiv:1906.00338, https://arxiv.org/abs/1906.00338 (accessed 2020-05-12).
  96. Single Layer h-BN (Boron Nitride) Film Grown on Copper Foil: 2" x 1 https://graphene-supermarket.com/Single-layer-h-BN- Boron-Nitride-film-grown-in-copper-foil-2-x-1.html (accessed 2020- 06-15).
  97. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401.
  98. Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235-246.
  99. Cancado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190. (96) Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Blake, P.; Shen, Z. X.; Hill, E. H.; Novoselov, K. S.; Geim, A. K. On Resonant Scatterers as a Factor Limiting Carrier Mobility in Graphene. Nano Lett. 2010, 10, 3868-3872.
  100. Chen, J.-H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect Scattering in Graphene. Phys. Rev. Lett. 2009, 102, 236805.
  101. Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman Fingerprint of Charged Impurities in Graphene. Appl. Phys. Lett. 2007, 91, 233108.
  102. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210-215.
  103. Basko, D. M.; Piscanec, S.; Ferrari, A. C. Electron-Electron Interactions and Doping Dependence of the Two-Phonon Raman Intensity in Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 165413.
  104. Bruna, M.; Ott, A. K.; Ijas, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8, 7432-7441.
  105. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Gruneisen Parameters, and Sample Orientation. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 205433.
  106. Yoon, D.; Son, Y. W.; Cheong, H. Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene. Phys. Rev. Lett. 2011, 106, 155502.
  107. Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Lett. 2012, 12, 617-621.
  108. Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett. 2004, 93, 1-4.
  109. Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the Adiabatic Born- Oppenheimer Approximation in Graphene. Nat. Mater. 2007, 6, 198- 201.
  110. Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum Emission from Hexagonal Boron Nitride Monolayers. Nat. Nanotechnol. 2016, 11, 37-41.
  111. Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical Separation of Mechanical Strain from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024.
  112. Neumann, C.; Reichardt, S.; Venezuela, P.; Drogeler, M.; Banszerus, L.; Schmitz, M.; Watanabe, K.; Taniguchi, T.; Mauri, F.; Beschoten, B.; Rotkin, S. V.; Stampfer, C. Raman Spectroscopy as Probe of Nanometre-Scale Strain Variations in Graphene. Nat. Commun. 2015, 6, 8429.
  113. Couto, N. J. G.; Costanzo, D.; Engels, S.; Ki, D.-K.; Watanabe, K.; Taniguchi, T.; Stampfer, C.; Guinea, F.; Morpurgo, A. F. Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Phys. Rev. X 2014, 4, 041019.
  114. Berger, H. H. Models for Contacts to Planar Devices. Solid- State Electron. 1972, 15, 145-158.
  115. Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.; Dean, C. R. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614-617.
  116. Falkovsky, L. A. Optical Properties of Graphene. J. Phys. Conf. Ser. 2008, 129, 012004.
  117. Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a High Mobility Dual-Gated Graphene Field-Effect Transistor with Al2O3 Dielectric. Appl. Phys. Lett. 2009, 94, 062107.
  118. Huard, B.; Stander, N.; Sulpizio, J. A.; Goldhaber-Gordon, D. Evidence of the Role of Contacts on the Observed Electron-Hole Asymmetry in Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 121402.
  119. Lee, E. J.; Balasubramanian, K.; Weitz, R. T.; BurkHard, M.; Kern, K. Contact and Edge Effects in Graphene Devices. Nat. Nanotechnol. 2008, 3, 486-490.
  120. Valdes, L. Resistivity Measurements on Germanium for Transistors. Proc. IRE 1954, 42, 420-427.
  121. Hanson, G. W. Dyadic Green's Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene. J. Appl. Phys. 2008, 103, 064302.
  122. Alexander, C. K.; Sadiku, M. Fundamentals of Electric Circuits; McGraw-Hill: London, UK, 2008.
  123. Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the Quantum Capacitance of Graphene. Nat. Nanotechnol. 2009, 4, 505-509.
  124. Razavi, B. Design of Integrated Circuits for Optical Communications; John Wiley & Sons: New York, NY, 2012.
  125. Pitris, S.; Moralis-Pegios, M.; Alexoudi, T.; Fotiadis, K.; Ban, Y.; Heyn, P.; De Campenhout, J.; Van Pleros, N. A 400 Gb/s O-Band WDM (8 × 50 Gb/s) Silicon Photonic Ring Modulator-Based Transceiver. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 2020, 1-3.
  126. Chaisakul, P.; Vakarin, V.; Frigerio, J.; Chrastina, D.; Isella, G.; Vivien, L.; Marris-Morini, D. Recent Progress on Ge/SiGe Quantum Well Optical Modulators, Detectors, and Emitters for Optical Interconnects. Photonics 2019, 6, 24.
  127. Heebner, J.; Grover, R.; Ibrahim, T. Optical Microresonators; Springer-Verlag: New York, 2008.
  128. Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 2012, 12, 161-166.