Academia.eduAcademia.edu

Outline

Optoelectronic mixing with high-frequency graphene transistors

2021, Nature Communications

https://doi.org/10.1038/S41467-021-22943-1

Abstract

Graphene is ideally suited for optoelectronics. It offers absorption at telecom wavelengths, high-frequency operation and CMOS-compatibility. We show how high speed optoelectronic mixing can be achieved with high frequency (~20 GHz bandwidth) graphene field effect transistors (GFETs). These devices mix an electrical signal injected into the GFET gate and a modulated optical signal onto a single layer graphene (SLG) channel. The photodetection mechanism and the resulting photocurrent sign depend on the SLG Fermi level (EF). At low EF (<130 meV), a positive photocurrent is generated, while at large EF (>130 meV), a negative photobolometric current appears. This allows our devices to operate up to at least 67 GHz. Our results pave the way for GFETs optoelectronic mixers for mm-wave applications, such as telecommunications and radio/light detection and ranging (RADAR/LIDARs.)

References (73)

  1. Maas, S. A. Microwave Mixers (Artech House Inc., 1986).
  2. Gagliardi, R. M. & Karp, S. Optical communications (Wiley-Interscience, 1976).
  3. Gu, Q. RF system design of transceivers for wireless communications (Springer, 2006).
  4. Skolnik, M. I. Introduction to radar systems (McGraw-Hill, 2001).
  5. Pozar, D. M. Microwave engineering (John Wiley & Sons, 2009).
  6. Chizh, A. & Malyshev, S. Fiber-optic system for local-oscillator signal distribution in active phased arrays. 11th European Radar Conference (2014).
  7. Ruff, W. C. et al. Self-mixing detector candidates for an FM/cw ladar architecture. SPIE Proceedings, 4035 (2000.
  8. Pillet, G., Morvan, L., Dolfi, D. & Huignard, J.-P. Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement. Proceedings Volume 7114, Electro-Optical Remote Photonic Technologies, and Applications II; 71140E (2008).
  9. Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341 (2014).
  10. Vercesi, V. et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures. Opt. Lett. 40, 1358 (2015).
  11. Choi, C.-S. et al. 60-GHz bidirectional radio-on-fiber links based on InP- InGaAs HPT optoelectronic mixers. IEEE Photonics Technol. Lett. 17, 2721 (2005).
  12. Rouvalis, E., Fice, M. J., Renaud, C. C. & Seeds, A. J. Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes. Opt. Express 19, 2079 (2011).
  13. Sze, S. M. & Ng, K. K. Physics of semiconductor devices (John Wiley & Sons, 2006).
  14. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611 (2010).
  15. Koppens, F. H. L. et al. Photodetectors based on graphene, other two- dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).
  16. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392 (2018).
  17. Sun, Z. P. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803 (2010).
  18. Tang, Z., Li, Y., Yao, J. & Pan, S. Photonics based microwave frequency mixing: methodology and applications. Laser Photonics Rev. 14, 1 (2019).
  19. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).
  20. Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).
  21. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).
  22. Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).
  23. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
  24. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892 (2013).
  25. Thomas, S. CMOS-compatible graphene. Nat. Electron. 1, 612 (2018).
  26. Giambra, M. A. et al. Wafer-scale integration of graphene-based photonic devices. ACS Nano 15, 3171 (2021).
  27. Mzali, S. et al. Stabilizing a graphene platform toward discrete components. Appl. Phys. Lett. 109, 253110 (2016).
  28. Mao, X. et al. Optoelectronic mixer based on graphene FET. IEEE Elec. Dev. Lett. 36, 253-255 (2015).
  29. Montanaro, A. et al. Thirty gigahertz optoelectronic mixing in chemical vapor deposited graphene. Nano Lett. 16, 2988 (2016).
  30. Saleh, B. E. A. & Teich, M. C. Fundamentals of photonics, 3rd edn. (Wiley Series in Pure and Applied Optics, 2015).
  31. Mohammad, A. W. et al. 5 Gbps wireless transmission link with an optically pumped uni-traveling carrier photodiode mixer at the receiver. Opt. Express 26, 2884-2890 (2018).
  32. Tomadin, A. et al. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Sci. Adv. 4, 5313 (2018).
  33. Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).
  34. Freitag, M., Low, T., Xia, F. N. & Avouris, P. Photoconductivity of biased graphene. Nat. Photonics 7, 53 (2013).
  35. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two- dimensional crystals, and hybrid systems. Nanoscale 7, 4598 (2015).
  36. Sassi, U. et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 8, 14311 (2017).
  37. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).
  38. Lagatsky, A. A. et al. 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 102, 013113 (2013).
  39. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).
  40. Cancado, L. G. et al. Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).
  41. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
  42. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010).
  43. Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. Mater. Today 15, 564 (2012).
  44. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711 (2007).
  45. Klar, P. et al. Raman scattering efficiency of graphene. Phys. Rev. B 87, 205435 (2013).
  46. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210 (2008).
  47. Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).
  48. Bruna, M. et al. Doping dependence of the raman spectrum of defected graphene. ACS Nano 8, 7432 (2014).
  49. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816 (2011).
  50. De Fazio, D. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926 (2019).
  51. Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 6, 3062 (2012).
  52. Petrone, N., Meric, I., Hone, J. & Shepard, K. L. Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121 (2012).
  53. Rzin, M. et al. Impact of gate-drain spacing on low-frequency noise performance of in situ sin passivated InAlGaN/GaN MIS-HEMTs. IEEE Trans. Electron. Devices 64, 2820 (2017).
  54. Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 101, 1567 (2013).
  55. Wei, W. et al. Graphene FETs with aluminum bottom-gate electrodes and its natural oxide as dielectrics. IEEE Trans. Elec. Dev. 62, 2769 (2015).
  56. Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261 (2015).
  57. Guo, Z. et al. Ultrafast photoconductivity of graphene nanoribbons and carbon nanotubes. Nano Lett. 13, 942 (2013).
  58. Davidson, A., Jones, K. & Strid, E. LRM and LRRM calibrations with automatic determination of load inductance, 36th ARFTG conference digest. IEEE 18, 57-63 (1990).
  59. Inagaki, K., Kawanishi, T. & Izutsu, M. Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator. IEICE Elec. Exp. 9, 220 (2012).
  60. Zebrev, G. I. Graphene field effect transistors: diffusion-drift theory. IntechOpen 23 https://www.fzu.cz/~knizek/literatura/Ashcroft_Mermin.pdf (2011)
  61. Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Device Lett. 28, 282 (2007).
  62. Ashcroft, N. W. & Mermin, N. D. Holt. Solid State Physics. (Rinehart and Winston, US, 1976).
  63. Frenzel, A. J., Lui, C. H., Shin, Y. C., Kong, J. & Gedik, N. Semiconducting-to- metallic photoconductivity crossover and temperature-dependent drude weight in graphene. Phys. Rev. Lett. 113, 056602 (2014).
  64. De Fazio, D. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 10, 8252 (2016).
  65. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297-301 (2010).
  66. Sedra, A. S. & Smith, K. C. Microelectronic Circuits, 5th edn. (Oxford University Press, 2019).
  67. Shi, S.-F. et al. Controlling graphene ultrafast hot carrier from metal- like to semiconductor-like by electrostatic gating. Nano Lett. 14, 1578 (2014).
  68. Schuler, S. et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107 (2016).
  69. Jensen, S. A. et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 14, 5839-5845 (2014).
  70. Tan, Y.-W. et al. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. B 99, 246803 (2007).
  71. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two- dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).
  72. Katsnelson, M. I. & Geim, A. K. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A. 366, 195-204 (2007).
  73. Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene-metal interfaces. Phys. Condens. Matter 27, 164207 (2015).