Optoelectronic mixing with high-frequency graphene transistors
2021, Nature Communications
https://doi.org/10.1038/S41467-021-22943-1Abstract
Graphene is ideally suited for optoelectronics. It offers absorption at telecom wavelengths, high-frequency operation and CMOS-compatibility. We show how high speed optoelectronic mixing can be achieved with high frequency (~20 GHz bandwidth) graphene field effect transistors (GFETs). These devices mix an electrical signal injected into the GFET gate and a modulated optical signal onto a single layer graphene (SLG) channel. The photodetection mechanism and the resulting photocurrent sign depend on the SLG Fermi level (EF). At low EF (<130 meV), a positive photocurrent is generated, while at large EF (>130 meV), a negative photobolometric current appears. This allows our devices to operate up to at least 67 GHz. Our results pave the way for GFETs optoelectronic mixers for mm-wave applications, such as telecommunications and radio/light detection and ranging (RADAR/LIDARs.)
References (73)
- Maas, S. A. Microwave Mixers (Artech House Inc., 1986).
- Gagliardi, R. M. & Karp, S. Optical communications (Wiley-Interscience, 1976).
- Gu, Q. RF system design of transceivers for wireless communications (Springer, 2006).
- Skolnik, M. I. Introduction to radar systems (McGraw-Hill, 2001).
- Pozar, D. M. Microwave engineering (John Wiley & Sons, 2009).
- Chizh, A. & Malyshev, S. Fiber-optic system for local-oscillator signal distribution in active phased arrays. 11th European Radar Conference (2014).
- Ruff, W. C. et al. Self-mixing detector candidates for an FM/cw ladar architecture. SPIE Proceedings, 4035 (2000.
- Pillet, G., Morvan, L., Dolfi, D. & Huignard, J.-P. Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement. Proceedings Volume 7114, Electro-Optical Remote Photonic Technologies, and Applications II; 71140E (2008).
- Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341 (2014).
- Vercesi, V. et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures. Opt. Lett. 40, 1358 (2015).
- Choi, C.-S. et al. 60-GHz bidirectional radio-on-fiber links based on InP- InGaAs HPT optoelectronic mixers. IEEE Photonics Technol. Lett. 17, 2721 (2005).
- Rouvalis, E., Fice, M. J., Renaud, C. C. & Seeds, A. J. Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes. Opt. Express 19, 2079 (2011).
- Sze, S. M. & Ng, K. K. Physics of semiconductor devices (John Wiley & Sons, 2006).
- Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611 (2010).
- Koppens, F. H. L. et al. Photodetectors based on graphene, other two- dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).
- Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392 (2018).
- Sun, Z. P. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803 (2010).
- Tang, Z., Li, Y., Yao, J. & Pan, S. Photonics based microwave frequency mixing: methodology and applications. Laser Photonics Rev. 14, 1 (2019).
- Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).
- Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).
- Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).
- Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).
- Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
- Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892 (2013).
- Thomas, S. CMOS-compatible graphene. Nat. Electron. 1, 612 (2018).
- Giambra, M. A. et al. Wafer-scale integration of graphene-based photonic devices. ACS Nano 15, 3171 (2021).
- Mzali, S. et al. Stabilizing a graphene platform toward discrete components. Appl. Phys. Lett. 109, 253110 (2016).
- Mao, X. et al. Optoelectronic mixer based on graphene FET. IEEE Elec. Dev. Lett. 36, 253-255 (2015).
- Montanaro, A. et al. Thirty gigahertz optoelectronic mixing in chemical vapor deposited graphene. Nano Lett. 16, 2988 (2016).
- Saleh, B. E. A. & Teich, M. C. Fundamentals of photonics, 3rd edn. (Wiley Series in Pure and Applied Optics, 2015).
- Mohammad, A. W. et al. 5 Gbps wireless transmission link with an optically pumped uni-traveling carrier photodiode mixer at the receiver. Opt. Express 26, 2884-2890 (2018).
- Tomadin, A. et al. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Sci. Adv. 4, 5313 (2018).
- Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).
- Freitag, M., Low, T., Xia, F. N. & Avouris, P. Photoconductivity of biased graphene. Nat. Photonics 7, 53 (2013).
- Ferrari, A. C. et al. Science and technology roadmap for graphene, related two- dimensional crystals, and hybrid systems. Nanoscale 7, 4598 (2015).
- Sassi, U. et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 8, 14311 (2017).
- Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).
- Lagatsky, A. A. et al. 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 102, 013113 (2013).
- Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).
- Cancado, L. G. et al. Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).
- Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
- Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010).
- Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. Mater. Today 15, 564 (2012).
- Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711 (2007).
- Klar, P. et al. Raman scattering efficiency of graphene. Phys. Rev. B 87, 205435 (2013).
- Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210 (2008).
- Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).
- Bruna, M. et al. Doping dependence of the raman spectrum of defected graphene. ACS Nano 8, 7432 (2014).
- Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816 (2011).
- De Fazio, D. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926 (2019).
- Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 6, 3062 (2012).
- Petrone, N., Meric, I., Hone, J. & Shepard, K. L. Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121 (2012).
- Rzin, M. et al. Impact of gate-drain spacing on low-frequency noise performance of in situ sin passivated InAlGaN/GaN MIS-HEMTs. IEEE Trans. Electron. Devices 64, 2820 (2017).
- Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 101, 1567 (2013).
- Wei, W. et al. Graphene FETs with aluminum bottom-gate electrodes and its natural oxide as dielectrics. IEEE Trans. Elec. Dev. 62, 2769 (2015).
- Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261 (2015).
- Guo, Z. et al. Ultrafast photoconductivity of graphene nanoribbons and carbon nanotubes. Nano Lett. 13, 942 (2013).
- Davidson, A., Jones, K. & Strid, E. LRM and LRRM calibrations with automatic determination of load inductance, 36th ARFTG conference digest. IEEE 18, 57-63 (1990).
- Inagaki, K., Kawanishi, T. & Izutsu, M. Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator. IEICE Elec. Exp. 9, 220 (2012).
- Zebrev, G. I. Graphene field effect transistors: diffusion-drift theory. IntechOpen 23 https://www.fzu.cz/~knizek/literatura/Ashcroft_Mermin.pdf (2011)
- Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Device Lett. 28, 282 (2007).
- Ashcroft, N. W. & Mermin, N. D. Holt. Solid State Physics. (Rinehart and Winston, US, 1976).
- Frenzel, A. J., Lui, C. H., Shin, Y. C., Kong, J. & Gedik, N. Semiconducting-to- metallic photoconductivity crossover and temperature-dependent drude weight in graphene. Phys. Rev. Lett. 113, 056602 (2014).
- De Fazio, D. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 10, 8252 (2016).
- Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297-301 (2010).
- Sedra, A. S. & Smith, K. C. Microelectronic Circuits, 5th edn. (Oxford University Press, 2019).
- Shi, S.-F. et al. Controlling graphene ultrafast hot carrier from metal- like to semiconductor-like by electrostatic gating. Nano Lett. 14, 1578 (2014).
- Schuler, S. et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107 (2016).
- Jensen, S. A. et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 14, 5839-5845 (2014).
- Tan, Y.-W. et al. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. B 99, 246803 (2007).
- Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two- dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).
- Katsnelson, M. I. & Geim, A. K. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A. 366, 195-204 (2007).
- Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene-metal interfaces. Phys. Condens. Matter 27, 164207 (2015).