Academia.eduAcademia.edu

Outline

Testing probabilistic models of binocular 3D motion perception

2014

https://doi.org/10.4473/TPM21.4.2

Abstract

Geometric constraints for the perception of three-dimensional (3D) binocular motion are discussed in a probabilistic framework. Two alternative Bayesian models of binocular integration are put forward to explain perceptual bias under uncertainty. The models exploit biologically plausible constraints of local motion and disparity processing in a binocular viewing geometry. Results from computer simulations and model selection support the idea that disparity processing rather than motion processing introduces perceptual bias in 3D motion. This suggests that the binocular motion system combines motion and disparity constraints relatively late when establishing a 3D motion percept.

References (105)

  1. Adelson, E. H., & Movshon J. A. (1982). Phenomenal coherence of moving visual patterns. 3ature, 300, 523-525. doi:10.1038/300523a0
  2. Anzai, A., Ohzawa, I., & Freeman, R. D. (2001). Joint encoding of motion and depth by visual cortical neurons: Neural basis of the Pulfrich effect. 3ature 3euroscience, 4, 513-518. doi:10.1038/87462
  3. Ascher, D., & Grzywacz, N. N. (2000). A Bayesian model for the measurement of visual velocity. Vision Research, 40, 3427-3434. doi:10.1016/S0042-6989(00)00176-0
  4. Ban, H., Preston, T. J., Meeson, A., & Welchman, A. E. (2012). The integration of motion and disparity cues to depth in dorsal visual cortex. 3ature 3euroscience, 15, 636-643. doi:10.1038/nn.3046
  5. Berkeley, G. (1975). Philosophical works including the works on vision (M. R. Ayers, Ed.). London, UK: Dent. (Original work published 1709).
  6. Beverley, K. I., & Regan, D. (1973). Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space, The Journal of Physiology, 235, 17-29.
  7. Beverley, K. I., Regan, D. (1974). Temporal integration of disparity information in stereoscopic perception. Experimental Brain Research, 19, 228-232. doi:10.1007/BF00238537
  8. Beverley, K. I., Regan, D. (1975). The relation between discrimination and sensitivity in the perception of motion in depth. The Journal of Physiology, 249, 387-398.
  9. Braddick, O. J. (1974). A short-range process in apparent motion. Vision Research, 14, 519-527. doi:10.1016/0042-6989(74)90041-8
  10. Braddick, O. J. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of Royal Society B, 290, 137-151. doi:10.1098/rstb.1980.0087
  11. Bradley, D. C., Qian, N., & Andersen, R. A. (1995). Integration of motion and stereopsis in middle tempo- ral cortical area of macaques. 3ature, 373, 609-611. doi:10.1038/373609a0
  12. Bradshaw, M. F., & Cumming, B. G. (1997). The direction of retinal motion facilitates binocular stereop- sis. Proceedings of the Royal Society of London B, 264, 1421-1427. doi:10.1098/rspb.1997.0198
  13. Brooks, K. R. (2002). Interocular velocity difference contributes to stereomotion speed perception. Journal of Vision, 2, 218-231. doi:10.1167/2.3.2
  14. Brooks, K. R. & Stone, L. S. (2004). Stereomotion speed perception: Contributions from both changing disparity and interocular velocity difference over a range of relative disparities. Journal of Vision, 4, 1061-1079. doi:10.1167/4.12.6
  15. Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision, 61, 211-231. doi:10.1023/ B:VISI.0000045324.43199.43
  16. Carceroni, R. L., & Kutulakos, K. N. (2002). Multi-view scene capture by surfel sampling: From video streams to non-rigid 3D motion, shape and reflectance. International Journal of Computer Vision, 49, 175-214. doi:10.1023/A:1020145606604
  17. Carney, T., Paradiso, M. A., & Freeman, R. D. (1989). A physiological correlate of the Pulfrich effect in cortical neurons of the cat. Vision Research, 29, 155-165. doi:10.1016/0042-6989(89)90121-1
  18. Cumming, B. G., & Parker, A. J. (1994). Binocular mechanisms for detecting motion in depth. Vision Re- search, 34, 483-495. doi:10.1016/0042-6989(94)90162-7
  19. DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in macaque area MT. The Journal of 3euroscience, 19, 1398-1415.
  20. DeAngelis, G. C., & Newsome, W. T. (2004). Perceptual "read-out" of conjoined direction and disparity maps in extrastriate area MT. PLoS Biology, 2, e0394. doi:10.1371/journal.pbio.0020077
  21. DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization of simple-cell recep- tive fields in the cat's striate cortex. I. General characteristics and postnatal development. Journal of 3europhysiology, 69, 1091-1117.
  22. Edwards, M., & Schor, C. M. (1999). Depth aliasing by the transient stereo-system. Vision Research, 39, 4333-4340. doi:10.1016/S0042-6989(99)00149-2
  23. Fernandez, J. M., & Farell, B. (2005). Seeing motion-in-depth using inter-ocular velocity differences. Vi- sion Research, 45, 2786-2798. doi:10.1016/j.visres.2005.05.021
  24. Graf, E. W., Adams, W. J., & Lages, M. (2004). Prior monocular information can bias motion perception. Journal of Vision, 4, 427-433. doi:10.1167/4.6.2
  25. Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of Royal Society B, 290, 181-197. doi:10.1098/rstb.1980.0090
  26. Harris, J. M. (2006). The interaction of eye movements and retinal signals during the perception of 3-D motion direction. Journal of Vision, 6, 777-790.
  27. Harris, J. M., & Dean, P. J. A. (2003). Accuracy and precision of binocular 3-D motion perception. Journal of Experimental Psychology: Human Perception and Performance, 29, 869-881. doi:10.1037/ 0096- 1523.29.5.869
  28. Harris, J. M., & Drga, V. F. (2005). Using visual direction in three-dimensional motion perception. 3ature 3euroscience, 8, 229-233. doi:10.1038/nn1389
  29. Harris, J. M., Nefs, H. T., & Grafton, C. E. (2008). Binocular vision and motion-in-depth. Spatial Vision, 21, 531-547. doi:10.1163/156856808786451462
  30. Harris, J. M., & Rushton, S. K. (2003). Poor visibility of motion-in-depth is due to early motion averaging. Vision Research, 43, 385-392. doi:10.1016/S0042-6989(02)00570-9
  31. Heron, S., & Lages, M. (2012). Screening and sampling in studies of binocular vision. Vision Research, 62, 228-234. doi:10.1016/j.visres.2012.04.012
  32. Hildreth, E. C. (1984). The computation of the velocity field. Proceedings of the Royal Society of London B, 221, 189-220. doi:10.1098/rspb.1984.0030
  33. Hinkle, D. A., & Connor, C. E. (2002). Three-dimensional orientation tuning in macaque area V4. 3ature 3euroscience, 5, 665-670. doi:10.1038/nn875
  34. Hogervorst, M. A., & Eagle, R. A. (1998). Biases in three-dimensional structure-from-motion arise from noise in the early visual system. Proceedings of the Royal Society: Biological Sciences, 265, 1587- 1593. doi:10.1098/rspb.1998.0476
  35. Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185-203. doi:10.1016/0004-3702(81)90024-2
  36. Howard, I. P., & Rogers, B. J. (2002). Seeing in depth (Vol. 2). Depth Perception. Ontario, Canada: I. Porteous.
  37. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160, 106-154.
  38. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cor- tex. The Journal of Physiology, 195, 215-243.
  39. Hubel, D. H., & Wiesel, T. N. (1970). Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. 3ature, 225, 41-42. doi:10.1038/225041a0
  40. Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the Bayesian model of perceived speed. Vi- sion Research, 42, 2253-2257. doi:10.1016/S0042-6989(02)00119-0
  41. Ji, H., & Fermüller, C. (2006). Noise causes slant underestimation in stereo and motion. Vision Research, 46, 3105-3120. doi:10.1016/j.visres.2006.04.010
  42. Johnston, A., McOwan, P. W., & Benton, C. (1999). Robust velocity computation from a biologically mo- tivated model of motion perception. Proceedings of the Royal Society of London B, 266, 509-518. doi:10.1098/rspb.1999.0666
  43. Knill, D. C., Kersten, D., & Yuille, A. L. (1996). Introduction: A Bayesian formulation of visual percep- tion. In D. C. Knill & W. Richards (Eds.), Perception as Bayesian Inference (pp. 1-21). Cambridge, UK: Cambridge University Press.
  44. Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge, UK: Cambridge Uni- versity Press.
  45. Koenderink, J. J., & van Doorn, A. J. (1991). Affine structure from motion. Journal of the Optical Society of America A, 8, 377-385. doi:10.1364/JOSAA.8.000377
  46. Lages, M. (2006). Bayesian models of binocular 3-D motion perception. Journal of Vision, 6, 508-522. doi:10.1167/6.4.14
  47. Lages, M. (2013). Straight or curved? From deterministic to probabilistic models of binocular 3D motion perception. Frontiers in Behavioral 3euroscience, 7, 1-3. doi:10.3389/fnbeh.2013.00079
  48. Lages, M, Dolia, A., & Graf, E. W. (2007). Dichoptic motion perception limited to depth of fixation? Vi- sion Research, 47, 244-252. doi:10.1016/j.visres.2006.10.001
  49. Lages, M., & Heron, S. (2008). Motion and disparity processing informs Bayesian 3D motion estimation. Proceedings of the 3ational Academy of Science of the United States of America, 105, E117. doi:10.1073/pnas.0809829105
  50. Lages, M., & Heron, S. (2010). On the inverse problem of local binocular 3D motion perception. PLoS Computational Biology, 6, e1000999. doi:10.1371/journal.pcbi.1000999
  51. Lages, M., Jenkins, R., & Hillis, J. M. (2008). Anticipation of gravity alters perception of average speed [Abstract]. Perception, 37(Suppl.), 28.
  52. Lages, M., Mamassian, P., & Graf, E. W. (2003). Spatial and temporal tuning of motion in depth. Vision Research, 43, 2861-2873. doi:10.1016/j.visres.2003.08.006
  53. Ledgeway, T., & Smith, A. T. (1994). Evidence for separate motion-detecting mechanisms for first-order and 2nd-order motion in human vision. Vision Research, 34, 2727-2740. doi:10.1016/0042-6989 (94)90229-1
  54. Likova, L. T., & Tyler, C. W. (2007). Stereomotion processing in the human occipital cortex. 3euroimage, 38, 293-305. doi:10.1016/j.neuroimage.2007.06.039
  55. Lu, Z.-L., & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35, 2697-2722. doi:10.1016/0042-6989 (95)00025-U
  56. Lu, Z.-L., & Sperling, G. (2001). Three systems theory of human visual motion perception: Review and update. Journal of the Optical Society of America A, 18, 2331-2370. doi:10.1364/JOSAA.19.002142
  57. Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In P. J. Hayes (Ed.), Proceedings of the 7th International Joint Conference on Artificial In- telligence (pp. 674-679). Vancouver, BC, Canada: William Kaufmann Inc.
  58. Majaj, N., Carandini, M., & Movshon, J. A. (2007). Motion integration by neurons in macaque MT is local not global. The Journal of 3euroscience, 27, 366-370. doi:10.1523/JNEUROSCI.3183-06.2007
  59. Marr, D. (1982). Vision. New York, NY: W. H. Freeman & Co.
  60. Masson, G. S., & Castet, E. (2002). Parallel motion processing for the initiation of short-latency ocular fol- lowing in humans. The Journal of 3euroscience, 22, 5149-5163.
  61. Maunsell, J. H., & van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey: I. Selectivity for stimulus direction, speed, and orientation. Journal of 3europhysiology, 49, 1127-1147.
  62. Mayhew, J. E. W., & Longuet-Higgins, H. C. (1982). A computational model of binocular depth percep- tion. 3ature, 297, 376-378. doi:10.1038/297376a0
  63. Miles, F. A. (1998). The neural processing of 3-D visual information: Evidence from eye movements. European Journal of 3euroscience, 10, 811-822. doi:10.1046/j.1460-9568.1998.00112.x
  64. Min, D., & Sohn, K. (2006). Edge-preserving simultaneous joint motion-disparity estimation. Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), 2, 74-77. doi:10.1109/ICPR.2006.470
  65. Morgan, M. J., & Fahle, M. (2000). Motion-stereo mechanisms sensitive to interocular phase. Vision Re- search, 40, 1667-1675. doi:10.1016/S0042-6989(00)00016-X
  66. Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science, 249, 1037-1041. doi:10.1126/ scien- ce.2396096
  67. Orban, G. A. (2008). Higher order visual processing in macaque extrastriate cortex. Physiological Review, 88, 59-89. doi:10.1152/physrev.00008.2007
  68. Pack, C. C., Born, R. T., & Livingstone, M. S. (2003). Two-dimensional substructure of stereo and motion interactions in macaque visual cortex. 3euron, 37, 525-535. doi:10.1016/S0896-6273(02)01187-X Peng, Q., & Shi, B. E. (2010). The changing disparity energy model. Vision Research, 50, 181-192. doi:10.1016/j.visres.2009.11.012
  69. Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research, 41, 3145-3161. doi:10.1016/ S0042-6989(01)00173-0
  70. Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. 3ature, 317, 314-319. doi:10.1038/317314a0
  71. Ponce, C. R., Lomber, S. G., & Born, R. T. (2008). Integrating motion and depth via parallel pathways. 3a- ture 3euroscience, 11, 216-223. doi:10.1038/nn2039
  72. Portfors-Yeomans, C. V., & Regan, D. (1996). Cyclopean discrimination thresholds for the direction and speed of motion in depth. Vision Research, 36, 3265-3279. doi:10.1016/0042-6989(96)00065-X Qian, N. (1994). Computing stereo disparity and motion with known binocular cell properties. 3eural Com- putation, 6, 390-404. doi:10.1162/neco.1994.6.3.390
  73. Qian, N., & Andersen, R. A. (1997). A physiological model for motion-stereo integration and a unified ex- planation of Pulfrich-like phenomena. Vision Research, 37, 1683-1698. doi:10.1016/S0042- 6989(96)00164-2
  74. Raftery, A. E. (1995). Baysian model selection in social research. Sociological Methodology, 25, 111-163.
  75. Rashbass, C., & Westheimer, G. (1961). Disjunctive eye movements. The Journal of Physiology, 159, 339-360.
  76. Read, J. C. A. (2002a). A Bayesian approach to the stereo correspondence problem. 3eural Computation, 14, 1371-1392. doi:10.1162/089976602753712981
  77. Read, J. C. A. (2002b). A Bayesian model of stereopsis depth and motion direction discrimination. Bio- logical Cybernetics, 86, 117-136. doi:10.1007/s004220100280
  78. Read, J. C. A., & Cumming, B. G. (2005a). Effect of interocular delay on disparity-selective V1 neurons: Relationship to stereoacuity and the Pulfrich effect. Journal of 3europhysiology, 94, 1541-1553. doi:10.1152/jn.01177.2004
  79. Read, J. C. A., & Cumming, B. G. (2005b). The stroboscopic Pulfrich effect is not evidence for the joint encoding of motion and depth. Journal of Vision, 5, 417-434. doi:10.1167/5.5.3
  80. Regan, D., & Beverley, K. I. (1973). Some dynamic features of depth perception, Vision Research, 13, 2369-2379. doi:10.1016/0042-6989(73)90236-8
  81. Regan, D., Beverley, K. I., Cynader, M., & Lennie, P. (1979). Stereoscopic subsystems for position in depth and for motion in depth. Proceedings of the Royal Society of London B, 42, 485-501. doi:10.1098/rspb.1979.0042
  82. Regan, D., & Gray, R. (2009). Binocular processing of motion; some unresolved problems. Spatial Vision, 22, 1-43.
  83. Rokers, B., Cormack, L. K., & Huk, A. C. (2008). Strong percepts of motion through depth without strong percepts of position in depth. Journal of Vision, 8, 1-10. doi:10.1167/8.4.6
  84. Rokers, B., Cormack, L. K., & Huk, A. C. (2009). Disparity-and velocity-based signals for three-dimensional motion perception in human MT+. 3ature 3euroscience, 12, 1050-1055. doi:10.1038/nn.2343
  85. Rushton, S. K., & Duke, P. A. (2007). The use of direction and distance information in the perception of approach trajectory. Vision Research, 47, 899-912. doi:10.1016/j.visres.2006.11.019
  86. Rushton, S. K., & Warren, P. A. (2005). Moving observers, relative retinal motion, and the detection of ob- ject movement. Current Biology, 15, R542. doi:10.1016/j.cub.2005.07.020
  87. Scharr, H., & Küsters, R. (2002). A linear model for simultaneous estimation of 3D motion and depth. Proceedings of the IEEE Workshop on Motion and Video Computing (pp. 220-225). Orlando, FL: IEEE. doi:10.1109/MOTION. 2002.1182240
  88. Shioiri, S., Saisho, H., & Yaguchi, H. (2000). Motion in depth based on inter-ocular velocity differences. Vision Research, 40, 2565-2572. doi:10.1016/S0042-6989(00)00130-9
  89. Spies, H., Jähne, B. J., & Barron, J. L. (2002). Range flow estimation. Computer Vision Image Under- standing, 85, 209-231. doi:10.1006/cviu.2002.0970
  90. Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. 3ature 3euroscience, 9, 578-585. doi:10.1038/nn1669
  91. Thomas, O. M., Cumming, B. G., & Parker A. J. (2002). A specialization for relative disparity in V2. 3a- ture 3euroscience, 5, 472-478. doi:10.1038/nn837
  92. Tyler, C. W. (1971). Stereoscopic depth movement: Two eyes less sensitive than one. Science, 174, 958- 961. doi:10.1126/science.174.4012.958
  93. Ullman, S., & Yuille, A. (1989). Rigidity and smoothness of motion. In S. Ullman & W. Richards (Eds.), Image understanding (pp.163-183). Norwood, NJ: Ablex Publishing Corporation.
  94. van Ee, R., & Anderson, B. L. (2001). Motion direction, speed and orientation in binocular matching. 3a- ture, 410, 690-694. doi:10.1038/35070569
  95. Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005). Three-dimensional scene-flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 475-480. doi:10.1109/TPAMI. 2005.63
  96. von Helmholtz, H. (1962). Treatise on physiological optics. In J. P. Southall (Ed. & Trans.), Helmholtz's Treatise on physiological optics (Vol. 1, pp. 312-313). New York, NY: Dover. (Original work pub- lished 1910).
  97. Wang, H., Heron, S., Moreland, J., & Lages, M. (2012). A Bayesian approach to the aperture problem of 3D motion perception. Proceedings of the International Conference on 3D Imaging (IC3D) (pp. 1-
  98. Liege, Belgium. doi:10.1109/IC3D.2012.6615116
  99. Wang, H., & Lages, M. (2011, May). A biologically-inspired Bayesian model of 3D velocity estimation. Paper presented at the AVA Meeting, Cardiff, UK.
  100. Watt, S. J., Akeley, K., Ernst, M. O., & Banks, M. S. (2005). Focus cues affect perceived depth. Journal of Vision, 5, 834-862. doi:10.1167/5.10.7
  101. Weiss, Y., & Fleet, D. J. (2001). Velocity likelihoods in biological and machine vision. In R. P. N. Rao, B. Olshausen, & M. S. Lewicki (Eds.), Probabilistic models of the brain: Perception and neural func- tion (pp. 81-100). Cambridge, MA: MIT Press.
  102. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. (2002). Motion illusions as optimal percepts. 3ature 3euro- science, 5, 598-604. doi:10.1038/nn858
  103. Welchman, A. E., Lam, J. M., & Bülthoff, H. H. (2008). Bayesian motion estimation accounts for a sur- prising bias in 3D vision. Proceedings of the 3ational Academy of Science of the United States of America, 105, 12087-12092.
  104. Welchman, A. E., Tuck, V. L., & Harris, J. M. (2004). Human observers are biased in judging the angular approach of a projectile. Vision Research, 44, 2027-2042. doi:10.1016/j.visres.2004.03.014
  105. Yo, C., & Wilson, H. R. (1992). Perceived direction of moving two-dimensional patterns depends on dura- tion, contrast and eccentricity. Vision Research, 32, 135-147.