Abstract
Geometric constraints for the perception of three-dimensional (3D) binocular motion are discussed in a probabilistic framework. Two alternative Bayesian models of binocular integration are put forward to explain perceptual bias under uncertainty. The models exploit biologically plausible constraints of local motion and disparity processing in a binocular viewing geometry. Results from computer simulations and model selection support the idea that disparity processing rather than motion processing introduces perceptual bias in 3D motion. This suggests that the binocular motion system combines motion and disparity constraints relatively late when establishing a 3D motion percept.
References (105)
- Adelson, E. H., & Movshon J. A. (1982). Phenomenal coherence of moving visual patterns. 3ature, 300, 523-525. doi:10.1038/300523a0
- Anzai, A., Ohzawa, I., & Freeman, R. D. (2001). Joint encoding of motion and depth by visual cortical neurons: Neural basis of the Pulfrich effect. 3ature 3euroscience, 4, 513-518. doi:10.1038/87462
- Ascher, D., & Grzywacz, N. N. (2000). A Bayesian model for the measurement of visual velocity. Vision Research, 40, 3427-3434. doi:10.1016/S0042-6989(00)00176-0
- Ban, H., Preston, T. J., Meeson, A., & Welchman, A. E. (2012). The integration of motion and disparity cues to depth in dorsal visual cortex. 3ature 3euroscience, 15, 636-643. doi:10.1038/nn.3046
- Berkeley, G. (1975). Philosophical works including the works on vision (M. R. Ayers, Ed.). London, UK: Dent. (Original work published 1709).
- Beverley, K. I., & Regan, D. (1973). Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space, The Journal of Physiology, 235, 17-29.
- Beverley, K. I., Regan, D. (1974). Temporal integration of disparity information in stereoscopic perception. Experimental Brain Research, 19, 228-232. doi:10.1007/BF00238537
- Beverley, K. I., Regan, D. (1975). The relation between discrimination and sensitivity in the perception of motion in depth. The Journal of Physiology, 249, 387-398.
- Braddick, O. J. (1974). A short-range process in apparent motion. Vision Research, 14, 519-527. doi:10.1016/0042-6989(74)90041-8
- Braddick, O. J. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of Royal Society B, 290, 137-151. doi:10.1098/rstb.1980.0087
- Bradley, D. C., Qian, N., & Andersen, R. A. (1995). Integration of motion and stereopsis in middle tempo- ral cortical area of macaques. 3ature, 373, 609-611. doi:10.1038/373609a0
- Bradshaw, M. F., & Cumming, B. G. (1997). The direction of retinal motion facilitates binocular stereop- sis. Proceedings of the Royal Society of London B, 264, 1421-1427. doi:10.1098/rspb.1997.0198
- Brooks, K. R. (2002). Interocular velocity difference contributes to stereomotion speed perception. Journal of Vision, 2, 218-231. doi:10.1167/2.3.2
- Brooks, K. R. & Stone, L. S. (2004). Stereomotion speed perception: Contributions from both changing disparity and interocular velocity difference over a range of relative disparities. Journal of Vision, 4, 1061-1079. doi:10.1167/4.12.6
- Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision, 61, 211-231. doi:10.1023/ B:VISI.0000045324.43199.43
- Carceroni, R. L., & Kutulakos, K. N. (2002). Multi-view scene capture by surfel sampling: From video streams to non-rigid 3D motion, shape and reflectance. International Journal of Computer Vision, 49, 175-214. doi:10.1023/A:1020145606604
- Carney, T., Paradiso, M. A., & Freeman, R. D. (1989). A physiological correlate of the Pulfrich effect in cortical neurons of the cat. Vision Research, 29, 155-165. doi:10.1016/0042-6989(89)90121-1
- Cumming, B. G., & Parker, A. J. (1994). Binocular mechanisms for detecting motion in depth. Vision Re- search, 34, 483-495. doi:10.1016/0042-6989(94)90162-7
- DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in macaque area MT. The Journal of 3euroscience, 19, 1398-1415.
- DeAngelis, G. C., & Newsome, W. T. (2004). Perceptual "read-out" of conjoined direction and disparity maps in extrastriate area MT. PLoS Biology, 2, e0394. doi:10.1371/journal.pbio.0020077
- DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization of simple-cell recep- tive fields in the cat's striate cortex. I. General characteristics and postnatal development. Journal of 3europhysiology, 69, 1091-1117.
- Edwards, M., & Schor, C. M. (1999). Depth aliasing by the transient stereo-system. Vision Research, 39, 4333-4340. doi:10.1016/S0042-6989(99)00149-2
- Fernandez, J. M., & Farell, B. (2005). Seeing motion-in-depth using inter-ocular velocity differences. Vi- sion Research, 45, 2786-2798. doi:10.1016/j.visres.2005.05.021
- Graf, E. W., Adams, W. J., & Lages, M. (2004). Prior monocular information can bias motion perception. Journal of Vision, 4, 427-433. doi:10.1167/4.6.2
- Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of Royal Society B, 290, 181-197. doi:10.1098/rstb.1980.0090
- Harris, J. M. (2006). The interaction of eye movements and retinal signals during the perception of 3-D motion direction. Journal of Vision, 6, 777-790.
- Harris, J. M., & Dean, P. J. A. (2003). Accuracy and precision of binocular 3-D motion perception. Journal of Experimental Psychology: Human Perception and Performance, 29, 869-881. doi:10.1037/ 0096- 1523.29.5.869
- Harris, J. M., & Drga, V. F. (2005). Using visual direction in three-dimensional motion perception. 3ature 3euroscience, 8, 229-233. doi:10.1038/nn1389
- Harris, J. M., Nefs, H. T., & Grafton, C. E. (2008). Binocular vision and motion-in-depth. Spatial Vision, 21, 531-547. doi:10.1163/156856808786451462
- Harris, J. M., & Rushton, S. K. (2003). Poor visibility of motion-in-depth is due to early motion averaging. Vision Research, 43, 385-392. doi:10.1016/S0042-6989(02)00570-9
- Heron, S., & Lages, M. (2012). Screening and sampling in studies of binocular vision. Vision Research, 62, 228-234. doi:10.1016/j.visres.2012.04.012
- Hildreth, E. C. (1984). The computation of the velocity field. Proceedings of the Royal Society of London B, 221, 189-220. doi:10.1098/rspb.1984.0030
- Hinkle, D. A., & Connor, C. E. (2002). Three-dimensional orientation tuning in macaque area V4. 3ature 3euroscience, 5, 665-670. doi:10.1038/nn875
- Hogervorst, M. A., & Eagle, R. A. (1998). Biases in three-dimensional structure-from-motion arise from noise in the early visual system. Proceedings of the Royal Society: Biological Sciences, 265, 1587- 1593. doi:10.1098/rspb.1998.0476
- Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185-203. doi:10.1016/0004-3702(81)90024-2
- Howard, I. P., & Rogers, B. J. (2002). Seeing in depth (Vol. 2). Depth Perception. Ontario, Canada: I. Porteous.
- Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160, 106-154.
- Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cor- tex. The Journal of Physiology, 195, 215-243.
- Hubel, D. H., & Wiesel, T. N. (1970). Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. 3ature, 225, 41-42. doi:10.1038/225041a0
- Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the Bayesian model of perceived speed. Vi- sion Research, 42, 2253-2257. doi:10.1016/S0042-6989(02)00119-0
- Ji, H., & Fermüller, C. (2006). Noise causes slant underestimation in stereo and motion. Vision Research, 46, 3105-3120. doi:10.1016/j.visres.2006.04.010
- Johnston, A., McOwan, P. W., & Benton, C. (1999). Robust velocity computation from a biologically mo- tivated model of motion perception. Proceedings of the Royal Society of London B, 266, 509-518. doi:10.1098/rspb.1999.0666
- Knill, D. C., Kersten, D., & Yuille, A. L. (1996). Introduction: A Bayesian formulation of visual percep- tion. In D. C. Knill & W. Richards (Eds.), Perception as Bayesian Inference (pp. 1-21). Cambridge, UK: Cambridge University Press.
- Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge, UK: Cambridge Uni- versity Press.
- Koenderink, J. J., & van Doorn, A. J. (1991). Affine structure from motion. Journal of the Optical Society of America A, 8, 377-385. doi:10.1364/JOSAA.8.000377
- Lages, M. (2006). Bayesian models of binocular 3-D motion perception. Journal of Vision, 6, 508-522. doi:10.1167/6.4.14
- Lages, M. (2013). Straight or curved? From deterministic to probabilistic models of binocular 3D motion perception. Frontiers in Behavioral 3euroscience, 7, 1-3. doi:10.3389/fnbeh.2013.00079
- Lages, M, Dolia, A., & Graf, E. W. (2007). Dichoptic motion perception limited to depth of fixation? Vi- sion Research, 47, 244-252. doi:10.1016/j.visres.2006.10.001
- Lages, M., & Heron, S. (2008). Motion and disparity processing informs Bayesian 3D motion estimation. Proceedings of the 3ational Academy of Science of the United States of America, 105, E117. doi:10.1073/pnas.0809829105
- Lages, M., & Heron, S. (2010). On the inverse problem of local binocular 3D motion perception. PLoS Computational Biology, 6, e1000999. doi:10.1371/journal.pcbi.1000999
- Lages, M., Jenkins, R., & Hillis, J. M. (2008). Anticipation of gravity alters perception of average speed [Abstract]. Perception, 37(Suppl.), 28.
- Lages, M., Mamassian, P., & Graf, E. W. (2003). Spatial and temporal tuning of motion in depth. Vision Research, 43, 2861-2873. doi:10.1016/j.visres.2003.08.006
- Ledgeway, T., & Smith, A. T. (1994). Evidence for separate motion-detecting mechanisms for first-order and 2nd-order motion in human vision. Vision Research, 34, 2727-2740. doi:10.1016/0042-6989 (94)90229-1
- Likova, L. T., & Tyler, C. W. (2007). Stereomotion processing in the human occipital cortex. 3euroimage, 38, 293-305. doi:10.1016/j.neuroimage.2007.06.039
- Lu, Z.-L., & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35, 2697-2722. doi:10.1016/0042-6989 (95)00025-U
- Lu, Z.-L., & Sperling, G. (2001). Three systems theory of human visual motion perception: Review and update. Journal of the Optical Society of America A, 18, 2331-2370. doi:10.1364/JOSAA.19.002142
- Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In P. J. Hayes (Ed.), Proceedings of the 7th International Joint Conference on Artificial In- telligence (pp. 674-679). Vancouver, BC, Canada: William Kaufmann Inc.
- Majaj, N., Carandini, M., & Movshon, J. A. (2007). Motion integration by neurons in macaque MT is local not global. The Journal of 3euroscience, 27, 366-370. doi:10.1523/JNEUROSCI.3183-06.2007
- Marr, D. (1982). Vision. New York, NY: W. H. Freeman & Co.
- Masson, G. S., & Castet, E. (2002). Parallel motion processing for the initiation of short-latency ocular fol- lowing in humans. The Journal of 3euroscience, 22, 5149-5163.
- Maunsell, J. H., & van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey: I. Selectivity for stimulus direction, speed, and orientation. Journal of 3europhysiology, 49, 1127-1147.
- Mayhew, J. E. W., & Longuet-Higgins, H. C. (1982). A computational model of binocular depth percep- tion. 3ature, 297, 376-378. doi:10.1038/297376a0
- Miles, F. A. (1998). The neural processing of 3-D visual information: Evidence from eye movements. European Journal of 3euroscience, 10, 811-822. doi:10.1046/j.1460-9568.1998.00112.x
- Min, D., & Sohn, K. (2006). Edge-preserving simultaneous joint motion-disparity estimation. Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), 2, 74-77. doi:10.1109/ICPR.2006.470
- Morgan, M. J., & Fahle, M. (2000). Motion-stereo mechanisms sensitive to interocular phase. Vision Re- search, 40, 1667-1675. doi:10.1016/S0042-6989(00)00016-X
- Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science, 249, 1037-1041. doi:10.1126/ scien- ce.2396096
- Orban, G. A. (2008). Higher order visual processing in macaque extrastriate cortex. Physiological Review, 88, 59-89. doi:10.1152/physrev.00008.2007
- Pack, C. C., Born, R. T., & Livingstone, M. S. (2003). Two-dimensional substructure of stereo and motion interactions in macaque visual cortex. 3euron, 37, 525-535. doi:10.1016/S0896-6273(02)01187-X Peng, Q., & Shi, B. E. (2010). The changing disparity energy model. Vision Research, 50, 181-192. doi:10.1016/j.visres.2009.11.012
- Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research, 41, 3145-3161. doi:10.1016/ S0042-6989(01)00173-0
- Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. 3ature, 317, 314-319. doi:10.1038/317314a0
- Ponce, C. R., Lomber, S. G., & Born, R. T. (2008). Integrating motion and depth via parallel pathways. 3a- ture 3euroscience, 11, 216-223. doi:10.1038/nn2039
- Portfors-Yeomans, C. V., & Regan, D. (1996). Cyclopean discrimination thresholds for the direction and speed of motion in depth. Vision Research, 36, 3265-3279. doi:10.1016/0042-6989(96)00065-X Qian, N. (1994). Computing stereo disparity and motion with known binocular cell properties. 3eural Com- putation, 6, 390-404. doi:10.1162/neco.1994.6.3.390
- Qian, N., & Andersen, R. A. (1997). A physiological model for motion-stereo integration and a unified ex- planation of Pulfrich-like phenomena. Vision Research, 37, 1683-1698. doi:10.1016/S0042- 6989(96)00164-2
- Raftery, A. E. (1995). Baysian model selection in social research. Sociological Methodology, 25, 111-163.
- Rashbass, C., & Westheimer, G. (1961). Disjunctive eye movements. The Journal of Physiology, 159, 339-360.
- Read, J. C. A. (2002a). A Bayesian approach to the stereo correspondence problem. 3eural Computation, 14, 1371-1392. doi:10.1162/089976602753712981
- Read, J. C. A. (2002b). A Bayesian model of stereopsis depth and motion direction discrimination. Bio- logical Cybernetics, 86, 117-136. doi:10.1007/s004220100280
- Read, J. C. A., & Cumming, B. G. (2005a). Effect of interocular delay on disparity-selective V1 neurons: Relationship to stereoacuity and the Pulfrich effect. Journal of 3europhysiology, 94, 1541-1553. doi:10.1152/jn.01177.2004
- Read, J. C. A., & Cumming, B. G. (2005b). The stroboscopic Pulfrich effect is not evidence for the joint encoding of motion and depth. Journal of Vision, 5, 417-434. doi:10.1167/5.5.3
- Regan, D., & Beverley, K. I. (1973). Some dynamic features of depth perception, Vision Research, 13, 2369-2379. doi:10.1016/0042-6989(73)90236-8
- Regan, D., Beverley, K. I., Cynader, M., & Lennie, P. (1979). Stereoscopic subsystems for position in depth and for motion in depth. Proceedings of the Royal Society of London B, 42, 485-501. doi:10.1098/rspb.1979.0042
- Regan, D., & Gray, R. (2009). Binocular processing of motion; some unresolved problems. Spatial Vision, 22, 1-43.
- Rokers, B., Cormack, L. K., & Huk, A. C. (2008). Strong percepts of motion through depth without strong percepts of position in depth. Journal of Vision, 8, 1-10. doi:10.1167/8.4.6
- Rokers, B., Cormack, L. K., & Huk, A. C. (2009). Disparity-and velocity-based signals for three-dimensional motion perception in human MT+. 3ature 3euroscience, 12, 1050-1055. doi:10.1038/nn.2343
- Rushton, S. K., & Duke, P. A. (2007). The use of direction and distance information in the perception of approach trajectory. Vision Research, 47, 899-912. doi:10.1016/j.visres.2006.11.019
- Rushton, S. K., & Warren, P. A. (2005). Moving observers, relative retinal motion, and the detection of ob- ject movement. Current Biology, 15, R542. doi:10.1016/j.cub.2005.07.020
- Scharr, H., & Küsters, R. (2002). A linear model for simultaneous estimation of 3D motion and depth. Proceedings of the IEEE Workshop on Motion and Video Computing (pp. 220-225). Orlando, FL: IEEE. doi:10.1109/MOTION. 2002.1182240
- Shioiri, S., Saisho, H., & Yaguchi, H. (2000). Motion in depth based on inter-ocular velocity differences. Vision Research, 40, 2565-2572. doi:10.1016/S0042-6989(00)00130-9
- Spies, H., Jähne, B. J., & Barron, J. L. (2002). Range flow estimation. Computer Vision Image Under- standing, 85, 209-231. doi:10.1006/cviu.2002.0970
- Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. 3ature 3euroscience, 9, 578-585. doi:10.1038/nn1669
- Thomas, O. M., Cumming, B. G., & Parker A. J. (2002). A specialization for relative disparity in V2. 3a- ture 3euroscience, 5, 472-478. doi:10.1038/nn837
- Tyler, C. W. (1971). Stereoscopic depth movement: Two eyes less sensitive than one. Science, 174, 958- 961. doi:10.1126/science.174.4012.958
- Ullman, S., & Yuille, A. (1989). Rigidity and smoothness of motion. In S. Ullman & W. Richards (Eds.), Image understanding (pp.163-183). Norwood, NJ: Ablex Publishing Corporation.
- van Ee, R., & Anderson, B. L. (2001). Motion direction, speed and orientation in binocular matching. 3a- ture, 410, 690-694. doi:10.1038/35070569
- Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005). Three-dimensional scene-flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 475-480. doi:10.1109/TPAMI. 2005.63
- von Helmholtz, H. (1962). Treatise on physiological optics. In J. P. Southall (Ed. & Trans.), Helmholtz's Treatise on physiological optics (Vol. 1, pp. 312-313). New York, NY: Dover. (Original work pub- lished 1910).
- Wang, H., Heron, S., Moreland, J., & Lages, M. (2012). A Bayesian approach to the aperture problem of 3D motion perception. Proceedings of the International Conference on 3D Imaging (IC3D) (pp. 1-
- Liege, Belgium. doi:10.1109/IC3D.2012.6615116
- Wang, H., & Lages, M. (2011, May). A biologically-inspired Bayesian model of 3D velocity estimation. Paper presented at the AVA Meeting, Cardiff, UK.
- Watt, S. J., Akeley, K., Ernst, M. O., & Banks, M. S. (2005). Focus cues affect perceived depth. Journal of Vision, 5, 834-862. doi:10.1167/5.10.7
- Weiss, Y., & Fleet, D. J. (2001). Velocity likelihoods in biological and machine vision. In R. P. N. Rao, B. Olshausen, & M. S. Lewicki (Eds.), Probabilistic models of the brain: Perception and neural func- tion (pp. 81-100). Cambridge, MA: MIT Press.
- Weiss, Y., Simoncelli, E. P. & Adelson, E. H. (2002). Motion illusions as optimal percepts. 3ature 3euro- science, 5, 598-604. doi:10.1038/nn858
- Welchman, A. E., Lam, J. M., & Bülthoff, H. H. (2008). Bayesian motion estimation accounts for a sur- prising bias in 3D vision. Proceedings of the 3ational Academy of Science of the United States of America, 105, 12087-12092.
- Welchman, A. E., Tuck, V. L., & Harris, J. M. (2004). Human observers are biased in judging the angular approach of a projectile. Vision Research, 44, 2027-2042. doi:10.1016/j.visres.2004.03.014
- Yo, C., & Wilson, H. R. (1992). Perceived direction of moving two-dimensional patterns depends on dura- tion, contrast and eccentricity. Vision Research, 32, 135-147.