Academia.eduAcademia.edu

Outline

Binocular processing of motion: Some unresolved questions

2009, Spatial vision

https://doi.org/10.1163/156856809786618501

Abstract

The unresolved questions relating to binocular processing of motion include: Is the perceived speed of the motion in depth (MID) of an approaching object inversely proportional to the time to collision?; What visual information supports judgements of the direction of MID?; What is the relation between binocular and monocular processing in the perception of MID? We review whether the perception of stereomotion in depth of a monocularly visible object is caused entirely by a rate of change of disparity, and conclude that the difference between the horizontal velocities of the object's left and right retinal images makes at most only a small contribution to speed discrimination, but conclusions may be different for detection, perceived speed and directional discrimination. We review laboratory evidence on the relative importance of binocular and monocular information for interceptive action and collision avoidance and conclude that, in addition to the effect of considerable intersubject variability, the relative importance depends on the physical size of the approaching object, its distance and, if nonspherical, its direction of motion and whether it is rotating. We compare attempts to find whether the human visual system contains a mechanism specialized for the speed of cyclopean motion within a frontoparallel plane, and find the question ill-posed.

References (115)

  1. Alderson, G. J. K., Sully, D. L. and Sully, H. G. (1974). An operational analysis of a one-handed catching task using high-speed photography, J. Motor Behav. 6, 217-226.
  2. Allison, R. S. and Howard, I. P. (2000). Stereopsis with persisting and dynamic textures, Vision Research 40, 3822-3827.
  3. Andrews, T. J., Glennerster, A. and Parker, A. J. (2001). Stereoacuity thresholds in the presence of a reference surface, Vision Research 41, 3051-3061.
  4. Anstis, S. M. (1980). The perception of apparent movement, Philosoph. Trans. Roy. Soc. 290B, 153-168.
  5. Beverley, K. I. and Regan, D. (1973). Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space, J. Physiol. 235, 17-29.
  6. Beverley, K. I. and Regan, D. (1974a). Temporal integration of disparity information in stereoscopic perception, Exper. Brain Res. 19, 228-232.
  7. Beverley, K. I. and Regan, D. (1974b). Visual sensitivity to disparity pulses: evidence for directional selectivity, Vision Research 14, 357-361.
  8. Beverley, K. I. and Regan, D. (1975). The relation between discrimination and sensitivity in the perception of motion in depth, J. Physiol. 249, 387-398.
  9. Beverley, K. I. and Regan, D. (1979). Separable aftereffects of changing-size and motion-in-depth: different neural mechanisms? Vision Research 19, 727-732.
  10. Beverley, K. I. and Regan, D. (1980). Visual sensitivity to the shape and size of a moving object: implications for models of object perception, Perception 9, 151-160.
  11. Blake, R. and Fox, R. (1973). Psychophysical inquiry into binocular summation, Perception and Psychophysics 14, 161-185.
  12. Blakemore, C. (1970). The range of scope of binocular depth discriminations in man, J. Physiol. 211, 599-622.
  13. Bootsma, R. J. (1991). Predictive information and the control of action: what you see is what you get, Int. J. Sports Psychol. 22, 271-278.
  14. Bootsma, R. J. and van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis, J. Exper. Psychol.: Human Perception and Performance 17, 738-748.
  15. Braddick, O. J. (1974). A short-range process in apparent motion, Vision Research 14, 519-527.
  16. Braddick, O. J. (1980). Low-level and high-level processes in apparent motion, Philosoph. Trans. Roy. Soc. 290B, 137-151.
  17. Bradman, D. (1935). How to Play Cricket. A Daily Mail publication. Morrison and Gibbs, London.
  18. Bradshaw, M. F. and Glennerster, A. (2006). Stereoscopic acuity and observation distance, Spatial Vision 19, 21-36.
  19. Brooks, K. R. (2002). Interocular velocity difference contributes to stereomotion speed perception, J. Vision 2, 218-231.
  20. Brooks, K. R. and Stone, L. S. (2004). Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparity, J. Vision 4, 1061-1079.
  21. Caljouw, S. R., van der Kamp, J. and Savelsbergh, G. K. (2004). Catching optical information for the regulation of timing, Exper. Brain Res. 155, 427-438.
  22. Cumming, B. G. (1995). The relationship between stereoacuity and stereomotion thresholds, Percep- tion 24, 105-114.
  23. Cumming, B. G. and Parker, A. J. (1994). Binocular mechanisms for detecting motion in depth, Vision Research 34, 483-495.
  24. Donelly, M., Bowd, C. and Patterson, R. (1997). Direction discrimination of cyclopean (stereoscopic) and luminance motion, Vision Research 37, 2041-2046.
  25. Efron, R. (1957). Stereoscopic vision: I. Effect of temporal summation, Brit. J. Ophthalmol. 41, 709-730.
  26. Fernandez, J. M. and Farell, B. (2005). Seeing motion in depth using inter-ocular velocity differences, Vision Research 45, 2786-2798.
  27. Fielder, A. R. and Moseley, M. J. (1996). Does stereopsis matter in humans? Eye 10, 233-238.
  28. Godek, C. L. and Lawson, R. B. (1973). The effect of time interval between stimuli upon stereoscopic depth perception, Psychol. Rev. 23, 243-248.
  29. Gray, R. and Regan, D. (1996). Cyclopean motion perception produced by oscillations of size, disparity and location, Vision Research 36, 655-665.
  30. Gray, R. and Regan, D. (1998). Accuracy of estimating time to collision using binocular and monocular information, Vision Research 38, 499-512.
  31. Gray, R. and Regan, D. (1999a). Motion in depth: adequate and inadequate stimulation, Perception and Psychophysics 61, 236-245.
  32. Gray, R. and Regan, D. (1999b). Do monocular time to collision estimates necessarily involve perceived distance? Perception 28, 1257-1264.
  33. Gray, R. and Regan, D. (2000a). Estimating the time to collision with a rotating nonspherical object, Vision Research 40, 49-63.
  34. Gray, R. and Regan, D. (2000b). Simulated self-motion alters perceived time to collision, Curr. Biol. 10, 587-590.
  35. Gray, R. and Sieffert, R. (2005). Different strategies for using motion in depth information in catching, J. Exper. Psychol.: Human Perception and Performance 31, 1004-1022.
  36. Gray, R., Macuga, K. M. and Regan, D. (2004). Long range interactions between object-motion and self-motion in the perception of motion in depth, Vision Research 44, 179-195.
  37. Gray, R., Regan, D., Castaneda, B. and Sieffert, R. (2006). Role of feedback in the accuracy of perceived direction of motion-in-depth and control of interceptive action, Vision Research 46, 1676-1694.
  38. Grosslight, J. H., Fletcher, H. J., Masterton, R. B. and Hagen, R. (1978). Monocular vision and landing performance in general aviation pilots: cyclops revisited, Human Factors 20, 127-133.
  39. Hamstra, S. J. and Regan, D. (1995). Orientation discrimination in cyclopean vision, Vision Research 35, 365-374.
  40. Harris, J. M. and Watamaniuk, S. J. N. (1995). Speed discrimination of motion-in-depth using binocular cues, Vision Research 35, 885-896.
  41. Harris, J. M. and Watamaniuk, S. N. J. (1996). Poor speed discrimination suggests that there is no specialized mechanism for cyclopean motion, Vision Research 36, 2149-2157.
  42. von Helmholtz, H. (1910). In: Helmholtz's Treatise on Physiological Optics, Vol. 1, Southall, J. P. (Ed.), pp. 312-313. Dover, New York, USA (1962).
  43. Holtz, E. (1955). Die Deteiligung von Konverenz und Akkomodation an der Wahreugenommen Grozzenkonstanz, Naturwiss 42, 444.
  44. Hong, X. and Regan, D. (1989). Visual field defects for unidirectional and oscillatory motion in depth, Vision Research 29, 809-819.
  45. Howard, I. P. and Rogers, B. (1995). Binocular Vision and Stereopsis. Oxford University Press, Oxford, UK.
  46. Howard, I. P., Allison, R. S. and Howard, A. (1998). Depth from moving random uncorrelated dot displays, Invest. Ophthal. Vis. Sci. 31, 669.
  47. Hoyle, F. (1957). The Black Cloud. Heinemann, London, UK. Republished 1960, Penguin Books, London, UK.
  48. Julesz, B. (1960). Binocular depth perception of computer generated patterns, Bell System Tech. J. 39, 1125-1162.
  49. Julesz, B. (1971). Foundations of Cyclopean Perception. University of Chicago Press, Chicago, USA.
  50. Julesz, B. and Payne, R. A. (1968). Differences between monocular and binocular stroboscopic movement perception, Vision Research 8, 433-444.
  51. Kohly, R. P. and Regan, D. (1999). Evidence for a mechanism sensitive to the speed of cyclopean form, Vision Research 39, 1011-1024.
  52. Kohly, R. P. and Regan, D. (2002). Fast long-range interactions in the early processing of luminance- defined form, Vision Research 42, 49-63.
  53. Kruk, R. and Regan, D. (1983). Visual test results compared with flying performance in telemetry- tracked aircraft, Aviation, Space Environ. Med. 54, 906-911.
  54. Kruk, R. and Regan, D. (1996). Collision avoidance: a helicopter simulator study, Aviation, Space Environ. Med. 67, 111-114.
  55. Lee, D. N. (1976). A theory of visual control of braking based on information about time to collision, Perception 5, 437-459.
  56. Lewis, C. E. Jr. and Kriers, G. E. (1969). Flight research program: XIV. Landing performance in jet aircraft after the loss of binocular vision, Aerospace Med. 40, 957-963.
  57. Lewis, C. E. Jr., Blakeley, W. R., Swaroop, R., Masters, R. L. and McMurty, T. C. (1973). Landing performance by low-time private pilots after the sudden loss of binocular vision -Cyclops II, Aerospace Med. 44, 1241-1245.
  58. McCready, D. W. (1965). Size-distance perception and accommodation-convergence micropsia - a critique, Vision Research 5, 189-206.
  59. McKee, S. P. (1981). A local mechanism for differential velocity detection, Vision Research 21, 491-500.
  60. Montagne, G., Laurent, M., Durey, A. and Bootsma, R. (1999). Movement reversals in ball catching, Exper. Brain Res. 29, 87-92.
  61. Ogle, K. N. (1958). Note on stereoscopic acuity and observation distance, J. Optic. Soc. Amer. 48, 794-798.
  62. Ogle, K. N. (1963). Stereoscopic depth perception and exposure delay between images to the two eyes, J. Optic. Soc. Amer. 53, 1296-1304.
  63. Papert, S. (1964). Stereoscopic synthesis as a technique for locating visual mechanisms, MIT Quart. Prog. Rep. 73, 239-243.
  64. Patterson, R. (1999). Stereoscopic (cyclopean) motion sensing, Vision Research 39, 3329-3345.
  65. Patterson, R., Hart, P. and Nowak, D. (1991). The cyclopean Ternus display and the perception of element versus group movement, Vision Research 31, 2085-2092.
  66. Patterson, R., Ricker, C., McGary, J. and Rose, D. (1992). Properties of cyclopean motion perception, Vision Research 32, 149-156.
  67. Patterson, R., Bowd, C., Phinney, R., Pohndorf, R., Barton-Howard, W. and Angilette, I. M. (1994). Properties of the stereoscopic motion aftereffect, Vision Research 24, 1139-1147.
  68. Peper, L., Bootsma, R. J., Mestre, D. R. and Bakker, F. C. (1994). Catching balls: how to get the hand to the right place at the right time, J. Exper. Psychol.: Human Percept. Perform. 20, 591-612.
  69. Phinney, R., Wilson, R., Hays, B., Peters, K. and Patterson, R. (1994). Spatial displacement limits for cyclopean (stereoscopic) apparent-motion perception, Perception 23, 1287-1306.
  70. Poggio, G. F. (1991). Physiological basis of stereoscopic vision, in: Binocular Vision, Regan, D. (Ed.), pp. 224-238. Macmillan Press, London, UK.
  71. Poggio, G. F. and Fischer, B. (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkeys, J. Neurophysiol. 40, 1392-1407.
  72. Poggio, G. F. and Talbot, W. H. (1981). Neural mechanisms of static and dynamic stereopsis in foveal striate cortex of rhesus monkeys, J. Physiol. 315, 461-492.
  73. Portfors, C. V. and Regan, D. (1997). Just noticeable differences in the speed of cyclopean motion in depth and of cyclopean motion within a frontoparallel plane, J. Exper. Psychol.: Human Perception and Performance 23, 1074-1086.
  74. Portfors-Yeomans, C. V. and Regan, D. (1996). Cyclopean discrimination thresholds for the direction and speed of motion in depth, Vision Research 36, 3625-3279.
  75. Portfors-Yeomans, C. V. and Regan, D. (1997). Discrimination of the direction and speed of a monocularly visible target from binocular information alone, J. Exper. Psychol.: Human Perception and Performance 23, 227-243.
  76. Regan, D. (1982). Visual information channelling in normal and disordered vision, Psychol. Rev. 89, 407-444.
  77. Regan, D. (1986). Visual processing of four kinds of relative motion, Vision Research 26, 127-145.
  78. Regan, D. (1992). Visual judgements and midjudgements in cricket, and the art of flight, Perception 21, 91-115.
  79. Regan, D. (1993). Binocular correlates of the direction of motion in depth, Vision Research 33, 2359-2360.
  80. Regan, D. (1995). Spatial orientation in aviation: visual contributions, J. Vestibular Research 5, 455-471.
  81. Regan, D. (1997). Visual factors in hitting and catching, J. Sports Sci. 15, 533-558.
  82. Regan, D. (2000). Human Perception of Objects. Sinauer Associates, MA, USA.
  83. Regan, D. (2002). Binocular information about time to collision and time to passage, Vision Research 42, 2479-2484.
  84. Regan, D. and Beverley, K. I. (1973). Some dynamic features of depth perception, Vision Research 13, 2369-2379.
  85. Regan, D. and Beverley, K. I. (1978). Looming detectors in the human visual pathway, Vision Research 18, 415-421.
  86. Regan, D. and Beverley, K. I. (1979). Binocular and monocular stimuli for motion in depth: changing- disparity and changing-size feed the same motion-in-depth stage, Vision Research 19, 1331-1342.
  87. Regan, D. and Beverley, K. I. (1980). Visual responses to changing size and to sideways motion for different directions of motion in depth: linearization of visual responses, J. Optic. Soc. Amer. 11, 1289-1296.
  88. Regan, D. and Beverley, K. I. (1983). Spatial frequency discrimination and detection: comparison of postadaptation thresholds, J. Optic. Soc. Amer. 13, 1684-1690.
  89. Regan, D. and Beverley, K. I. (1985). Post-adaptation orientation discrimination, J. Optic. Soc. Amer. A7, 147-155.
  90. Regan, D. and Gray, R. (2000). Visually guided collision avoidance and collision achievement, Trends Cognit. Sci. 4, 99-107.
  91. Regan, D. and Gray, R. (2004). A step-by-step approach to research on time-to-contact and time- to-passage, in: Time to Contact, H. Hecht, J. Geert and J. P. Savelsbergh (Eds), pp. 175-228. Advances in Psychology Series. Elsevier, Amsterdam, The Netherlands.
  92. Regan, D. and Hamstra, S. J. (1993). Dissociation of discrimination thresholds for time to contact and for rate of angular expansion, Vision Research 33, 447-462.
  93. Regan, D. and Hamstra, S. (1994). Shape discrimination for rectangles defined by disparity alone, disparity plus luminance and by disparity plus motion, Vision Research 34, 2277-2291.
  94. Regan, D. and Kaushal, S. (1994). Monocular discrimination of the direction of motion in depth, Vision Research 34, 163-177.
  95. Regan, D. and Spekreijse, H. (1970). Electrophysiological correlate of binocular depth perception in man, Nature 255, 92-94.
  96. Regan, D., Beverley, K. I. and Cynader, M. (1979). The visual perception of motion in depth, Sci. Amer. 241, 136-151.
  97. Regan, D., Erkelens, C. J. and Collewijn, H. (1986a). Necessary conditions for the perception of motion in depth, Invest. Ophthalmol. Vis. Sci. 27, 584-597.
  98. Regan, D., Erkelens, C. J. and Collewijn, H. (1986b). Visual field defects for vergence eye movements and for stereomotion perception, Invest. Ophthalmol. Vis. Sci. 27, 806-819.
  99. Regan, D., Gray, R., Portfors, C. V., Hamstra, S. J., Vincent, A., Hong, X. H., Kohly, R. and Beverley, K. I. (1998). Catching, hitting and collision avoidance, in: Vision and Action, Harris, L. and Jenkin, M. (Eds), pp. 171-209. Cambridge University Press, Cambridge, UK.
  100. Richards, W. (1969). The influence of the oculomotor systems on visual perception. AFOSR Technical Report No. 69-1934 TR.
  101. Richards, W. (1972). Response functions for sine-and square-wave modulations of disparity, J. Optic. Soc. Amer. 62, 907-911.
  102. Richards, W. (1977). Stereopsis with and without monocular contours, Vision Research 17, 967-969.
  103. Richards, W. and Regan, D. (1973). A stereo field map with implications for disparity processing, Invest. Ophthalmol. 12, 904-909.
  104. Schöner, G. (1994). Dynamic theory of action-perception patterns: the time-before-contact paradigm, Human Movement Sci. 13, 415-439.
  105. Shioiri, S., Saisho, H. and Yaguchi, H. (2000). Motion in depth based on inter-ocular velocity differences, Vision Research 40, 2565-2572.
  106. Siderov, J. and Harwerth, R. S. (1993). Precision of stereoscopic depth perception from double images, Vision Research 33, 1553-1560.
  107. Tyler, C. W. (1971). Stereoscopic depth movement: two eyes less sensitive than one, Science 174, 958-961.
  108. Tyler, C. W. (1974). Depth perception in cyclopean gratings, Nature 251, 140-142.
  109. Tyler, C. W. (1975). Characteristics of stereomovement suppression, Perception and Psychophysics 17, 225-230.
  110. Tyler, C. W. (1991). Cyclopean vision, in: Binocular Vision, Regan, D. (Ed.), pp. 38-74. Macmillan, London, UK.
  111. Tyler, C. W. (2004). Binocular vision, in: Duane's Foundations of Clinical Ophthalmology, Vol. 2, Taiman, W. and Jaeger, E. A. (Eds), Chapter 24. J. R. Lippicott Co., Philadelphia, USA.
  112. Tyler, C. W. and Kontsevich, L. L. (2001). Stereoprocessing of cyclopean depth images: horizontally elongated receptive fields, Vision Research 41, 2235-2243.
  113. Tyler, C. W. and Raibert, M. (1975). Generation of random-dot stereograms, Behav. Res. Methods Instrument. 7, 37-41.
  114. Ukwade, M. T., Harwerth, R. S. and Bedell, H. E. (2007). Srereoscopic acuity, observation distance and fixation disparity, Spatial Vision 20, 489-492.
  115. Westheimer, G. (1979). Cooperative neural processes involved in stereoscopic acuity, Exper. Brain Res. 36, 585-597.