Application of Online Transportation Mode Recognition in Games
Applied Sciences
https://doi.org/10.3390/APP11198901Abstract
It is widely accepted that human activities largely contribute to global emissions and thus, greatly impact climate change. Awareness promotion and adoption of green transportation mode could make a difference in the long term. To achieve behavioural change, we investigate the use of a persuasive game utilising online transportation mode recognition to afford bonuses and penalties to users based on their daily choices of transportation mode. To facilitate an easy identification of transportation mode, classification predictive models are built based on accelerometer and gyroscope historical data. Preliminary results show that the classification true-positive rate for recognising 10 different transportation classes can reach up to 95% when using a historical set (66% without). Results also reveal that the random tree classification model is a viable choice compared to random forest in terms of sustainability. Qualitative studies of the trained classifiers and measurements of Android-...
References (57)
- C2ES. (nd). Reducing Your Transportation Footprint. Available online: https://www.c2es.org/content/reducing-your- transportation-footprint/ (accessed on 9 January 2019).
- Environment Protection UK. (nd). Air Pollution and Transport. Available online: https://www.environmental-protection.org. uk/policy-areas/air-quality/air-pollution-and-transport/ (accessed on 9 January 2019).
- OECD. Reducing Carbon Emissions from Transport Projects. 2010. Available online: https://www.oecd.org/derec/adb/471702 74.pdf (accessed on 23 August 2021).
- Bin, S.; Dowlatabadi, H. Consumer Lifestyle Approach to US Energy Use and The Related CO 2 Emissions. Energy Policy 2005, 33, 197-208. [CrossRef]
- Tyndall Centre for Climate Change Research. How Can We Reduce Carbon Emissions from Transport? Technical Report 15. 2004. Available online: https://www.lowcvp.org.uk/assets/reports/How_Can_We_Reduce_Carbon_Tyndall.pdf (accessed on 26 October 2018).
- EESI. (nd). Public Transit, Walking, and Biking. Available online: https://www.eesi.org/topics/public-transit-walking-biking/ description (accessed on 26 October 2018).
- Exergia. Study on Clean Transport Systems: Project 2010 n. 419-1-Unit Move B4 (Funded by European Commission). 2011. Available online: https://ec.europa.eu/transport/sites/transport/files/themes/urban/studies/doc/2011-11-clean-transport- systems.pdf (accessed on 26 October 2018).
- Prochaska, J.O.; Norcross, J.C.; DiClemente, C.C. Applying the stages of change. In Psychologists' desk reference; Koocher, G.P., Norcross, J.C., Greene, B.A., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 176-181. [CrossRef]
- Verywellmind. The 6 Stages of Behavior Change. 2018. Available online: https://www.verywellmind.com/the-stages-of-change- 2794868 (accessed on 21 December 2018).
- Hervas, R.; Ruiz-Carrasco, D.; Mondejar, T.; Bravo, J. Gamification Mechanics for Behavioural Change: A Systematic Review and Proposed Taxonomy. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, Pervasive Health'17, Barcelona, Spain, 23-26 May 2017; pp. 395-404. [CrossRef]
- Fogg, B.J. Persuasive Computers: Perspectives and Research Directions. In Proceedings of the CHI'98, Los Angeles, CA, USA, 18-23 April 1998. Available online: http://www.cse.chalmers.se/research/group/idc/ituniv/kurser/07/idproj/papers/fogg. pdf (accessed on 21 December 2018).
- Orji, R.; Moffatt, K. Persuasive Technology for Health and Wellness: State-Of-The-Art And Emerging Trends. Health Inform. J. 2016. [CrossRef] [PubMed]
- Johnson, D.; Deterding, S.; Kuhn, K.-A.; Staneva, A.; Stoyanov, S.; Hides, L. Gamification for Health And Wellbeing: A Systematic Review of The Literature. Internet Interv. 2016, 6, 89-106. [CrossRef] [PubMed]
- Connolly, T.M.; Boyle, E.A.; MacArthur, E.; Hainey, T.; Boyle, J.M. A Systematic Literature Review of Empirical Evidence on Computer Games and Serious Games. Comput. Educ. 2012, 59, 661-686. [CrossRef]
- Khaled, R.; Barr, P.; Noble, J.; Fischer, R.; Biddle, R. Fine Tuning the Persuasion in Persuasive Games. In Proceedings of the 2nd International Conference on Persuasive Technology, PERSUASIVE'07, Palo Alto, CA, USA, 26-27 April 2007.
- Lavender, T. Games just wanna have fun . . . or do they? In Proceedings of the Canadian Games Study Association (CGSA) Symposium, Toronto, ON, Canada, 21-24 September 2006.
- Froehlich, J.; Dillahunt, T.; Klasnja, P.; Mankoff, J.; Consolvo, S.; Harrison, B.; Landay, J.A. UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green Transportation Habits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4-9 April 2009; pp. 1043-1052. [CrossRef]
- Froehlich, J.E. Sensing and Feedback of Everyday Activities to Promote Environmental Behaviors. Unpublished. PhD Thesis, University of Washington, Washington, DC, USA, 2011. Available online: https://makeabilitylab.cs.washington.edu/media/ publications/Sensing_and_Feedback_of_Everyday_Activities_to_Promote_Environmental_Behaviors_Eye7nYF.pdf (accessed on 19 August 2021).
- Orji, R.; Mandryk, R.L.; Vassileva, J.; Gerling, K.M. Tailoring Persuasive Health Games to Gamer Type. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April-2 May 2013; pp. 2467-2476. [CrossRef]
- Deterding, S. The Fine Art of Separating Users from Their Bad Behaviours. Presentation, Reboot11: »Action«, 25 June 2009, Copenhagen, Denmark. 2017. Available online: http://codingconduct.cc/Persuasive-Design (accessed on 10 January 2019).
- Ferrara, J. Games for Persuasion. Games Cult. 2013, 8, 289-304. [CrossRef]
- Feng, T.; Timmermans, H. Transportation Mode Recognition Using GPS and Accelerometer Data. Transp. Res. Part C Emerg. Technol. 2013, 37, 118-130. [CrossRef]
- Priscolli, F.D.; Giuseppi, A.; Lisi, F. Automatic Transportation Mode Recognition on Smartphone Data Based on Deep Neural Networks. Sensors 2020, 20, 7228. [CrossRef]
- Liang, X.; Zhang, Y.; Wang, G.; Xu, S. A Deep Learning Model for Transportation Mode Detection Based on Smartphone Sensing Data. IEEE Trans. Intell. Transp. Syst. 2019, 21, 5223-5235. [CrossRef]
- Reddy, S.; Mun, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using Mobile Phones to Determine Transportation Modes. ACM Trans. Sens. Netw. (TOSN) 2010, 6, 13. [CrossRef]
- Nham, B.; Siangliulue, K.; Yeung, S. Predicting Mode of Transport From Iphone Accelerometer Data, Stanford University Class Project. 2008. Available online: https://pdfs.semanticscholar.org/111a/8a8faf04e754dcef1f0d4701a2d6af36ce8b.pdf (accessed on 9 January 2019).
- Ernest, P.; Mazl, R.; Preucil, L. Train Locator Using Inertial Sensors and Odometer. In Proceedings of the Intelligent Vehicles Symposium, Parma, Italy, 14-17 June 2004. [CrossRef]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. In Proceedings of the 4th International Workshop on Ambient Assisted Living and Home Care, Vitoria-Gasteiz, Spain, 3-5 December 2012; pp. 216-223. [CrossRef]
- Reyes-Ortiz, J.L.; Oneto, L.; Sama, A.; Parra, X.; Anguita, D. Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing 2016, 171, 754-767. [CrossRef]
- Nick, T.; Coersmeier, E.; Geldmacher, J.; Goetze, J. Classifying Means of Transportation Using Mobile Sensor Data. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18-23 July 2010. [CrossRef]
- Hemminki, S.; Nurmi, P.; Tarkoma, S. Accelerometer-Based Transportation Mode Detection on Smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, 11-15 November 2013. [CrossRef]
- Lorintiu, O.; Vassilev, A. Transportation Mode Recognition Based on Smartphone Embedded Sensors for Carbon Footprint Estimation. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio De Janeiro, Brazil, 1-4 November 2016. [CrossRef]
- Jahangiri, A.; Rakha, H.A. Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2406-2417. [CrossRef]
- Bedogni, L.; Di Felice, M.; Bononi, L. Context-Aware Android Applications through Transportation Mode Detection Techniques. J. Wirel. Commun. Mob. Comput. 2016, 16, 2523-2541. [CrossRef]
- Bedogni, L.; Di Felice, M.; Bononi, L. By Train or by Car? Detecting the User's Motion Type through Smartphone Sensors Data. In Proceedings of IFIP Wireless Days (WD), Dublin, Ireland, 21-23 November 2012. [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. ACM SIGKDD Explor. Newsl. 2009, 11, 10-18. [CrossRef]
- CHSD. (nd). SNAPshot Version 3.8 User Manual. Available online: https://ahsri.uow.edu.au/content/groups/public/@web/ @chsd/documents/doc/uow082650.pdf (accessed on 21 December 2018).
- Rjmarsan, Weka-For-Android, the Weka Project with the GUI Components Removed so It Works with Android. 16 February 2011. Available online: https://github.com/rjmarsan/Weka-for-Android/ (accessed on 6 March 2017).
- University of Waikato. WEKA Explorer User Guide for Version 3-4-3. 2004. Available online: http://weka.sourceforge.net/ manuals/ExplorerGuide.pdf (accessed on 21 December 2018).
- Weka 3: Data Mining Software in Java. Available online: https://www.cs.waikato.ac.nz/ml/weka/ (accessed on 3 January 2019).
- Gupta, S.; Gupta, A. Dealing with Noise Problem in Machine Learning Data-sets: A Systematic Review. Procedia Comput. Sci. 2019, 161, 466-474. [CrossRef]
- Baranes, A.F.; Oudeyer, P.Y.; Gottlieb, J. The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration. Front. Neurosci. 2014, 8, 317. [CrossRef] [PubMed]
- Serino, M.; Cordrey, K.; McLaughlin, L.; Milanaik, R.L. Pokémon Go and Augmented Virtual Reality Games: A Cautionary Commentary for Parents and Paediatricians. Curr. Opin. Paediatr. 2016, 28, 673-677. [CrossRef] [PubMed]
- Habgood, M.P.J.; Ainsworth, S.E.; Benford, S. Endogenous fantasy and learning in digital games. Simul. Gaming 2005, 36, 483-498.
- Malone, T.W.; Lepper, M.R. Making learning fun: A taxonomy of intrinsic motivations for learning. In Aptitude, Learning and Instruction: III. Conative and Affective Process Analyses; Snow, R.E., Farr, M.J., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1987; pp. 223-253.
- Malone, T.W. Toward a Theory of Intrinsically Motivating Instruction. Cogn. Sci. 1981, 4, 333-369. [CrossRef]
- Malone, T. What Makes Things Fun to Learn? Heuristics for Designing Instructional Computer Games. In Proceedings of the 3rd ACM SIGSMALL Symposium and the 1st SIGPC Symposium, Palo Alto, CA, USA, 18-19 September 1980; pp. 162-169.
- Kidd, C.; Hayden, B.Y. The psychology and neuroscience of curiosity. Neuron 2015, 88, 449-460. [CrossRef]
- Loewenstein, G. The Psychology of Curiosity: A Review and Reinterpretation. Psychol. Bull. 1994, 116, 75-98. [CrossRef]
- Hedemalm, E. Evergreen-The Game, Prototype Table-Top RPG/Strategy Rules. 2016. Available online: https://docs.google. com/document/d/155rwYDJeFLjx18rsv1tPCDg5rYvEK2pewqZfo4WNhxs/edit?usp=sharing (accessed on 12 November 2016).
- Hedelmalm, E. Promoting Green Transportation via Persuasive Games. Unpublished. Master's Thesis, Lulea University of Technology, Lulea, Sweden, 2017.
- Goldszmidt, M. Bayesian Network Classifiers; Wiley Online Library: New York, NY, USA, 2011. [CrossRef]
- ScikitLearn. (nd). Naïve Bayes. Available online: https://scikit-learn.org/stable/modules/naive_bayes.html (accessed on 20 August 2021).
- O'Reilly. (nd). Decision Trees Learning Pros and Cons. Available online: https://www.oreilly.com/library/view/machine- learning-with/9781787121515/697c4c5f-1109-4058-8938-d01482389ce3.xhtml (accessed on 21 August 2021).
- Dataversity. Machine Learning Algorithms: Introduction to Random Forests. 2017. Available online: https://www.dataversity. net/machine-learning-algorithms-introduction-random-forests/ (accessed on 21 August 2021).
- Klimova, A.; Rondeau, E.; Andersson, K.; Porras, J.; Rybin, A.; Zaslavsky, A. An International Master's Program in Green ICT as a Contribution to Sustainable Development. J. Clean. Prod. 2016, 135, 223-239. [CrossRef]
- Kor, A.L.; Rondeau, E.; Andersson, K.; Porras, J. Education in Green ICT and Control of Smart Systems: A First Hand Experience from the International PERCCOM Masters Programme. In Proceedings of the 12th International Federation of Automatic Control Symposium on Advances in Control Education (IFAC-ACE 2019), Philadelphia, PA, USA, 7-9 July 2019; Volume 52, Article Id 9. pp. 1-8. [CrossRef]