Academia.eduAcademia.edu

Outline

Fast normalized cross-correlation

1995, Vision Interface

Abstract
sparkles

AI

This paper introduces a new algorithm for computing normalized cross-correlation using transform domain convolution, which offers a significant speed advantage over traditional spatial domain methods. It outlines the drawbacks of existing approaches and emphasizes the practical applications of the proposed method, particularly in high-resolution feature tracking scenarios. The performance results demonstrate substantial reductions in processing time, suggesting that this novel approach can enhance efficiency in various fields requiring feature detection and tracking.

References (22)

  1. P. Anandan, "A Computational Framework and an Algorithm for the Measurement of Visual Motion", Int. J. Computer Vision, 2(3), p. 283-310, 1989.
  2. D. I. Barnea, H. F. Silverman, "A class of algorithms for fast digital image registration", IEEE Trans. Com- puters, 21, pp. 179-186, 1972.
  3. R. Brunelli and T. Poggio, "Face Recognition: Fea- tures versus Templates", IEEE Trans. Pattern Anal- ysis and Machine Intelligence, vol. 15, no. 10, pp. 1042-1052, 1993.
  4. P. J. Burt, C. Yen, X. Xu, "Local Correlation Mea- sures for Motion Analysis: a Comparitive Study", IEEE Conf. Pattern Recognition Image Processing 1982, pp. 269-274.
  5. F. Crow, "Summed-Area Tables for Texture Map- ping", Computer Graphics, vol 18, No. 3, pp. 207- 212, 1984.
  6. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, New York: Wiley, 1973.
  7. R. C. Gonzalez and R. E. Woods, Digital Image Processing (third edition), Reading, Massachusetts: Addison-Wesley, 1992.
  8. A. Goshtasby, S. H. Gage, and J. F. Bartholic, "A Two-Stage Cross-Correlation Approach to Template Matching", IEEE Trans. Pattern Analysis and Ma- chine Intelligence, vol. 6, no. 3, pp. 374-378, 1984.
  9. C. Kuglin and D. Hines, "The Phase Correlation Im- age Alignment Method," Proc. Int. Conf. Cybernetics and Society, 1975, pp. 163-165.
  10. J. P. Lewis, "Fast Template Matching", Vision Inter- face, p. 120-123, 1995.
  11. A. R. Lindsey, "The Non-Existence of a Wavelet Function Admitting a Wavelet Transform Convolu- tion Theorem of the Fourier Type", Rome Laboratory Technical Report C3BB, 1995.
  12. B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an Application to Stereo Vision", IJCAI 1981.
  13. S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, New York: Wiley, 1993.
  14. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, New Jersey: Prentice- Hall, 1975.
  15. D. Polk, "Product Probe" -Panasonic PV-IQ604, Videomaker, October 1994, pp. 55-57.
  16. W. Pratt, Digital Image Processing, John Wiley, New York, 1978.
  17. Qi Tian and M. N. Huhns, "Algorithms for Subpixel Registration", CVGIP 35, p. 220-233, 1986.
  18. T. W. Ryan, "The Prediction of Cross-Correlation Accuracy in Digital Stereo-Pair Images", PhD thesis, University of Arizona, 1981.
  19. J. Shi and C. Tomasi, "Good Features to Track", Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1994.
  20. Flame effects compositing software, Discreet Logic, Montreal, Quebec.
  21. Advance effects compositing software, Avid Tech- nology, Inc., Tewksbury, Massachusetts.
  22. After Effects effects compositing software, Adobe (COSA), Mountain View, California.