Academia.eduAcademia.edu

Outline

An empirical study of some feature matching strategies

2002

Abstract

This paper proposes an empirical evaluation of different matching strategies that have been proposed in the literature to solve the problem of feature point correspondence between images. They will be evaluated in terms of their ability to reduce the number of false matches in given match sets, while preserving the good matches. The validation process determines the number of good matches and the proportion of good matches in a given match set, and this for the different parameter values of a matching constraint.

References (16)

  1. T. Darell, A Radial Cumulative Similarity Transform for Robust Image Correspondence, CVPR, 1998.
  2. E. Delp, O. Mitchell, Image Compression Using Block Truncation Coding, IEEE Trans. on Commu- nication vol. 27, no. 9, pp. 1335-1342, 1979.
  3. O.D. Faugeras, P. Fua, B. Hotz, R. Ma, L. Robert, M. Thonnat, Z. Zhang, Quantitative and Qualitative Comparison of some Area and Feature-based Stereo Algorithms, Robust Comp. Vision, pp. 1-26, 1992.
  4. P. Fua, Combining Stereo and Monocular Informa- tion to Compute Dense Depth Maps that Preserve Depth Discontinuities. ijcai, 1991.
  5. E. Guelch, Result of Test on Image Matching of ISPR wg iii, Int. Archives of Photogrammetry and Remote Sensing, 27 (III), pp. 254-271, 1988.
  6. C. Harris, M. Stephens, A Combined Corner and Edge Detector, Alvey Vision, pp. 147-151, 1988.
  7. R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2000.
  8. R. Klette, K.Schluns, A. Koschan, Computer Vision: three-dimensional data from images. Sprigner, 1996.
  9. A. Koschan, A Framework for Area Based and Fea- ture Based Stereo Vision. MGV, vol. 2, no. 4, 1993.
  10. H. Nishihara, T. Poggio, Stereo vision for Robotics, ISRR, 1983.
  11. G. Roth, A. Whitehead, Using Projective vision to find Camera Positions in an Image Sequence, VI, pp.225-232, 2000.
  12. D. Scharstein, R. Szeliski, R. Zabih, A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspon- dence Algorithms, CVPR, Workshop on Stereo and Multi-Baseline Vision, 2001.
  13. C. Schmid, R. Mohr, C. Bauckhage, Comparing and Evaluating Interest Points, ICCV, pp. 230-235, 1998.
  14. S.M. Smith, J.M. Brady, SUSAN -A New Approach to Low Level Image Processing Technical Report, Oxford University, 1995.
  15. P. Torr, A. Zisserman, Robust Computation and Pa- rameterization of Multiple View Relations, ICCV, pp. 727-732, 1998.
  16. Z. Zhang, R. Deriche, O. Faugeras, Q.-T. Luong, A Robust Technique for Matching Two Uncali- brated Images Through the Recovery of the Unknown Epipolar Geomerty, Technical Report, INRIA, 1994.