Topics in Sparse Representation Modeling and Applications
2015
Abstract
First and foremost, I would like to thank my advisors Prof. Irad Yavneh and Prof. Michael Elad for their invaluable guidance and support during the course of my PhD studies. Irad's and Miki's enthusiasm and experience in research are a source of endless ideas. Their optimism, openness, brightness and clarity made working with them a unforgivable and enjoyable journey. Special thanks go to my colleagues and friends Dr. Eran Treister and Jeremias Sulam, with whom I had the honor to collaborate. I hope that we will find many more opportunities to collaborate in the future. I want to express my gratitude to my friends and colleagues for many inspiring discussions, helpful tips and fruitful conversations:
References (182)
- J. S. Turek, I. Yavneh, and M. Elad. On MMSE and MAP Denoising Under Sparse Repre- sentation Modeling Over a Unitary Dictionary. IEEE Transactions on Signal Processing, vol. 59, no. 8, pp. 3526-3535, Aug. 2011.
- J. S. Turek, I. Yavneh, and M. Elad. On MAP and MMSE Estimators for the Co-sparse Analysis Model. Digital Signal Processing, vol. 28, pp. 57-74, May 2014.
- J. S. Turek, I. Yavneh, and M. Elad. Clutter Mitigation on Echocardiography using Sparse Signal Separation. Accepted to International Journal in Biomedical Imaging, 2015.
- J. S. Turek, M. Elad, and I. Yavneh. Sparse Signal Separation with an Off-line Learned Dictionary for Clutter Reduction in Echocardiography. IEEE 28-th Convention of Electrical and Electronics Engineers in Israel, Dec. 2014.
- J. S. Turek, J. Sulam, M. Elad, and I. Yavneh. Fusion of Ultrasound Harmonic Imaging with Clutter Removal Using Sparse Signal Separation. 40-th IEEE International Confer- ence on Acoustics, Speech and Signal Processing 2015 (ICASSP 2015), Apr. 2015. (Equal Contribution)
- V. Abolghasemi, S. Ferdowsi, and S. Sanei. Blind separation of image sources via adaptive dictionary learning. IEEE Transactions on Image Processing, 21(6):2921- 2930, June 2012.
- M. Aharon and M. Elad. Sparse and redundant modeling of image content using an image-signature-dictionary. SIAM Journal on Imaging Sciences, 1(3):228-247, 2008.
- M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcom- plete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311-4322, November 2006.
- L. Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1):1-3, 1966.
- O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse max- imum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9:485-516, 2008.
- O. Banerjee, L. El Ghaoui, A. d'Aspremont, and G. Natsoulis. Convex optimization techniques for fitting sparse gaussian graphical models. In Proceedings of the 23rd International Conference on Machine learning (ICML), pages 89-96. ACM, 2006.
- R.G. Baraniuk, V. Cevher, and M.B. Wakin. Low-dimensional models for dimension- ality reduction and signal recovery: A geometric perspective. Proceedings of the IEEE, 98(6):959-971, 2010.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
- Z. Ben-Haim, Y.C. Eldar, and M. Elad. Coherence-based performance guarantees for es- timating a sparse vector under random noise. IEEE Transactions on Signal Processing, 58(10):5030-5043, October 2010.
- Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, January 2009.
- Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798-1828, 2013.
- P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, 37(4):pp. 1705-1732, 2009.
- J.A. Bilmes. Factored sparse inverse covariance matrices. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol- ume 2, pages II1009-II1012 vol.2, 2000.
- J.M. Bioucas-Dias and M.A.T. Figueiredo. A new twist: Two-step iterative shrink- age/thresholding algorithms for image restoration. IEEE Transactions on Image Pro- cessing, 16(12):2992-3004, December 2007.
- S. Bjaerum, H. Torp, and K. Kristoffersen. Clutter filter design for ultrasound color flow imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(2):204-216, February 2002.
- S. Bjaerum, H. Torp, and K. Kristoffersen. Clutter filters adapted to tissue motion in ultrasound color flow imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(6):693-704, 2002.
- J. Bobin, Y. Moudden, J.-L. Starck, and M. Elad. Morphological diversity and source separation. IEEE Signal Processing Letters, 13(7):409-412, July 2006.
- A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):34-81, February 2009.
- A. Buades, B. Coll, and J.-M Morel. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 60-65, 2005.
- J.-F. Cai, H. Ji, Z. Shen, and G.-B. Ye. Data-driven tight frame construction and image denoising. Applied and Computational Harmonic Analysis, 37(1):89 -105, 2014.
- J.-F. Cai, S. Osher, and Z. Shen. Split bregman methods and frame based image restoration. Multiscale Modeling & Simulation, 8(2):337-369, 2010.
- T.T. Cai, L. Wang, and G. Xu. Stable recovery of sparse signals and an oracle inequality. IEEE Transactions on Information Theory, 56(7):3516 -3522, July 2010.
- C. Caiati, N. Zedda, C. Montaldo, R. Montisci, and S. Iliceto. Contrast-enhanced transthoracic second harmonic echo doppler with adenosine: A noninvasive, rapid and effective method for coronary flow reserve assessment. Journal of the American College of Cardiology, 34(1):122 -130, 1999.
- E. Candès and T. Tao. The dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6):2313-2351, December 2007.
- E.J. Candès. Modern statistical estimation via oracle inequalities. Acta Numerica, 15:257-325, May 2006.
- E.J. Candès and D.L. Donoho. Recovering edges in ill-posed inverse problems: opti- mality of curvelet frames. The Annals of Statistics, 30(3):784-842, June 2002.
- E.J. Candès, Y.C. Eldar, D. Needell, and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59- 73, 2011.
- E.J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(3):11:1-11:37, June 2011.
- S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, 1998.
- G.M. Chin, J. Nocedal, P.A. Olsen, and S.J. Rennie. Second order methods for opti- mizing convex matrix functions and sparse covariance clustering. IEEE Transactions on Audio, Speech, and Language Processing, 21(11):2244-2254, November 2013.
- G. Cloutier, D. Chen, and L.-G. Durand. A new clutter rejection algorithm for doppler ultrasound. IEEE Transactions on Medical Imaging, 22(4):530-538, 2003.
- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3- d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080-2095, 2007.
- A. Danielyan, V. Katkovnik, and K. Egiazarian. Bm3d frames and variational image deblurring. IEEE Transactions on Image Processing, 21(4):1715-1728, 2012.
- A. d'Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse co- variance selection. SIAM Journal on Matrix Analysis and Applications, 30(1):56-66, 2008.
- I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathe- matics, 1992.
- I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on pure and applied mathematics, 57(11):1413-1457, 2004.
- B. Deka and P.K. Bora. Removal of correlated speckle noise using sparse and overcom- plete representations. Biomedical Signal Processing and Control, 8(6):520-533, 2013.
- R. Demirli and J. Saniie. An efficient sparse signal decomposition technique for ultra- sonic signal analysis using envelope and instantaneous phase. In IEEE International Ultrasonics Symposium (IUS), pages 1503-1507, November 2008.
- R. Demirli and J. Saniie. Model-based estimation pursuit for sparse decomposition of ultrasonic echoes. Signal Processing, IET, 6(4):313-325, June 2012.
- A.P. Dempster. Covariance selection. Biometrics, pages 157-175, 1972.
- M.N. Do and M. Vetterli. Contourlets: a new directional multiresolution image repre- sentation. In Conference Record of the 36th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 497-501, November 2002.
- A. Dobra, C. Hans, B. Jones, J.R. Nevins, G. Yao, and M. West. Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis, 90(1):196 -212, 2004. Special Issue on Multivariate Methods in Genomic Data Analysis.
- D.L. Donoho and M. Elad. On the stability of the basis pursuit in the presence of noise. Signal Processing, 86(3):511 -532, 2006. Sparse Approximations in Signal and Image Processing Sparse Approximations in Signal and Image Processing.
- D.L. Donoho and J.M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425-455, 1994.
- M. Elad. Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on Information Theory, 52(12):5559-5569, December 2006.
- M. Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, 2010.
- M. Elad, B. Matalon, and M. Zibulevsky. Coordinate and subspace optimization meth- ods for linear least squares with non-quadratic regularization. Applied and Computa- tional Harmonic Analysis, 23(3):346 -367, 2007.
- M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal priors. Inverse Problems, 23(3):947, 2007.
- M. Elad, J.-L. Starck, P. Querre, and D.L. Donoho. Simultaneous cartoon and tex- ture image inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 19(3):340-358, 2005.
- M. Elad and I. Yavneh. A plurality of sparse representations is better than the sparsest one alone. IEEE Transactions on Information Theory, 55(10):4701-4714, 2009.
- K. Engan, S.O. Aase, and J. Hakon Husoy. Method of optimal directions for frame design. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 5, pages 2443-2446, 1999.
- M.J. Fadili, J.-L. Starck, J. Bobin, and Y. Moudden. Image decomposition and separa- tion using sparse representations: An overview. Proceedings of the IEEE, 98(6):983-994, June 2010.
- S. Fischer, G. Cristobal, and R. Redondo. Sparse overcomplete gabor wavelet represen- tation based on local competitions. IEEE Transactions on Image Processing, 15(2):265- 272, February 2006.
- B.A. French, Y. Li, A.L. Klibanov, Z. Yang, and J.A. Hossack. 3D perfusion mapping in post-infarct mice using myocardial contrast echocardiography. Ultrasound in Medicine & Biology, 32(6):805-815, 2006.
- J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.
- C.M. Gallippi and G.E. Trahey. Adaptive clutter filtering via blind source separation for two-dimensional ultrasonic blood velocity measurement. Ultrasonic Imaging, 24(4):193- 214, 2002.
- S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):721-741, 1984.
- E. Gil-Rodrigo, J. Portilla, D. Miraut, and R. Suarez-Mesa. Efficient joint poisson-gauss restoration using multi-frame l2-relaxed-l0 analysis-based sparsity. In Proceedings of the 18th IEEE International Conference Image Processing (ICIP), pages 1385-1388, 2011.
- R. Giryes and M. Elad. Cosamp and SP for the cosparse analysis model. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO-2012), pages 964-968, 2012.
- R. Giryes and M. Elad. RIP-based near-oracle performance guarantees for SP, CoSaMP, and IHT. IEEE Transactions on Signal Processing, 60(3):1465-1468, March 2012.
- R. Giryes, S. Nam, R. Gribonval, and M.E. Davies. Iterative Cosparse Projection Algorithms for the Recovery of Cosparse Vectors. In Proceedings of the 19th European Signal Processing Conference (EUSIPCO-2011), pages 1460-1464, Barcelona, Espagne, 2011.
- R. Gribonval. Should penalized least squares regression be interpreted as maximum a posteriori estimation? IEEE Transactions on Signal Processing, 59(5):2405-2410, May 2011.
- T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the indian buffet process. Technical Report GCNU TR 2005-001, Gatsby Computational Neuroscience Unit, 2005.
- S. Gupta, R.C. Chauhan, and S.C. Sexana. Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering and Computing, 42(2):189-192, 2004.
- S. Hawe, M. Kleinsteuber, and K. Diepold. Cartoon-like image reconstruction via constrained p -minimization. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 717-720, 2012.
- S. Hawe, M. Kleinsteuber, and K. Diepold. Analysis operator learning and its applica- tion to image reconstruction. IEEE Transactions on Image Processing, 22(6):2138-2150, 2013.
- J. Honorio and T.S. Jaakkola. Inverse covariance estimation for high-dimensional data in linear time and space: Spectral methods for riccati and sparse models. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013.
- T. Hozumi, K. Yoshida, Y. Abe, R. Kanda, T. Akasaka, T. Takagi, T. Yagi, Y. Ogata, and J. Yoshikawa. Visualization of clear echocardiographic images with near field noise reduction technique: Experimental study and clinical experience. Journal of the Amer- ican Society of Echocardiography, 11(6):660-667, 1998.
- C.-J. Hsieh, I. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for sparse inverse covariance estimation. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2330-2338. Curran Associates, Inc., 2012.
- C.-J. Hsieh and P. Olsen. Nuclear norm minimization via active subspace selection. In Proceedings of the 31st International Conference on Machine Learning (ICML), ICML '14, June 2014.
- C.-J. Hsieh, M.A. Sustik, I. Dhillon, P. Ravikumar, and R. Poldrack. Big & quic: Sparse inverse covariance estimation for a million variables. In C.J.C. Burges, L. Bot- tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3165-3173. Curran Associates, Inc., 2013.
- C.-J. Hsieh, M.A. Sustik, I.S. Dhillon, and P.D. Ravikumar. Sparse inverse covariance matrix estimation using quadratic approximation. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2330-2338. Curran Associates, Inc., 2011.
- S. Huang, J. Li, L. Sun, J. Liu, T. Wu, K. Chen, A. Fleisher, E. Reiman, and J. Ye. Learning brain connectivity of alzheimer's disease from neuroimaging data. In Y. Ben- gio, D. Schuurmans, J.D. Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 808-816. Curran Associates, Inc., 2009.
- J.A. Jensen. Field: A program for simulating ultrasound systems. Medical and Biological Engineering and Computing, 10th Nordic-Baltic Conference on Biomedical Imaging, 4(1):351-353, 1996.
- H. Ji, Y. Xu, and Z. Shen. Wavelet based restoration of images with missing or damaged pixels. East Asian Journal on Applied Mathematics, 1(2):108-131, 2011.
- A.P. Kadi and T. Loupas. On the performance of regression and step-initialized IIR clutter filters for color doppler systems in diagnostic medical ultrasound. IEEE Transac- tions on Ultrasonics, Ferroelectrics, and Frequency Control, 42(5):927-937, September 1995.
- G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359-392, 1998.
- S.M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory, volume I. Prentice Hall, 1993.
- D.E. Kruse and K.W. Ferrara. A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(12):1739-1754, December 2002.
- D. Labate, W.-Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional repre- sentation using shearlets. In Wavelets XI (Proceedings of SPIE), volume 5914, pages 254-262, 2005.
- H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for train- ing deep neural networks. Journal of Machine Learning Research, 10:1-40, June 2009.
- E.G. Larsson and Y. Selen. Linear regression with a sparse parameter vector. IEEE Transactions on Signal Processing, 55(2):451-460, 2007.
- M.A. Lediju, B.C. Byram, and G.E. Trahey. Sources and characterization of clutter in cardiac b-mode images. In IEEE International Ultrasonics Symposium (IUS), pages 1419-1422, September 2009.
- M.A. Lediju, M.J. Pihl, S.J. Hsu, J.J. Dahl, C.M. Gallippi, and G.E. Trahey. Mag- nitude, origins, and reduction of abdominal ultrasonic clutter. In IEEE International Ultrasonics Symposium (IUS), pages 50-53, November 2008.
- M.A. Lediju, M.J. Pihl, S.J. Hsu, J.J. Dahl, C.M. Gallippi, and G.E. Trahey. A motion- based approach to abdominal clutter reduction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(11):2437-2449, November 2009.
- L.A.F. Ledoux, P.J. Brands, and A.P.G. Hoeks. Reduction of the clutter component in doppler ultrasound signals based on singular value decomposition: A simulation study. Ultrasonic Imaging, 19(1):1-18, 1997.
- K.Y.E. Leung, M.G. Danilouchkine, M. van Stralen, N. de Jong, A.F.W. van der Steen, and J.G. Bosch. Probabilistic framework for tracking in artifact-prone 3D echocardio- grams. Medical Image Analysis, 14(6):750-758, 2010.
- L. Li and K.-C. Toh. An inexact interior point method for l-1 regularized sparse covari- ance selection. Mathematical Programming Computation, 2(3-4):291-315, 2010.
- S. Li, H. Yin, and L. Fang. Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Transactions on Biomedical Engineering, 59(12):3450-3459, December 2012.
- Y. Li, C.D. Garson, Y. Xu, B.A. French, and J.A. Hossack. High frequency ultrasound imaging detects cardiac dyssynchrony in noninfarcted regions of the murine left ven- tricle late after reperfused myocardial infarction. Ultrasound in Medicine & Biology, 34(7):1063-1075, 2008.
- H. Liebgott, R. Prost, and D. Friboulet. Pre-beamformed RF signal reconstruction in medical ultrasound using compressive sensing. Ultrasonics, 53(2):525-533, 2013.
- Q. Liu, S. Wang, L. Ying, X. Peng, Y. Zhu, and D. Liang. Adaptive dictionary learning in sparse gradient domain for image recovery. IEEE Transactions on Image Processing, 22(12):4652-4663, 2013.
- H.-M. Lu, Y. Fainman, and R. Hecht-Nielsen. Image manifolds. In Proceedings of the SPIE, volume 3307 of Applications of Artificial Neural Networks in Image Processing III, pages 52-63, 1998.
- Y.M. Lu and M.N. Do. Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image Processing, 16(4):918-931, April 2007.
- Y.M. Lu and M.N. Do. A theory for sampling signals from a union of subspaces. IEEE Transactions on Signal Processing, 56(6):2334-2345, June 2008.
- S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 3rd edition, December 2008.
- S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415, December 1993.
- G. Marsaglia. Conditional means and covariances of normal variables with singular covariance matrix. Journal of the American Statistical Association, 59(308):1203-1204, 1964.
- F.R. Mauldin, F. Viola, and W.F. Walker. Robust motion estimation using complex principal components. In IEEE International Ultrasonics Symposium (IUS), pages 2429-2432, 2009.
- F.W. Mauldin, D. Lin, and J.A. Hossack. The singular value filter: A general filter design strategy for PCA-based signal separation in medical ultrasound imaging. IEEE Transactions on Medical Imaging, 30(11):1951-1964, November 2011.
- R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for large-scale graphical lasso. The Journal of Machine Learning Research, 13:781-794, 2012.
- D. Mele, O. Soukhomovskaia, E. Pacchioni, E. Merli, N. Avigni, L. Federici, R.A. Levine, and R. Ferrari. Improved detection of left ventricular thrombi and spontaneous echocontrast by tissue harmonic imaging in patients with myocardial infarction. Journal of the American Society of Echocardiography, 19:1373-1381, November 2006.
- O. Michailovich and D. Adam. A high-resolution technique for ultrasound harmonic imaging using sparse representations in gabor frames. IEEE Transactions on Medical Imaging, 21(12):1490-1503, December 2002.
- P. Moulin and J. Liu. Analysis of multiresolution image denoising schemes using gen- eralized gaussian and complexity priors. IEEE Transactions on Information Theory, 45(3):909-919, April 1999.
- S. Nam, M.E. Davies, M. Elad, and R. Gribonval. Cosparse analysis modeling -unique- ness and algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 5804-5807, 2011.
- S. Nam, M.E. Davies, M. Elad, and R. Gribonval. Recovery of cosparse signals with greedy analysis pursuit in the presence of noise. In Proceedings of the 4th IEEE In- ternational Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 361-364, 2011.
- S. Nam, M.E. Davies, M. Elad, and R. Gribonval. The cosparse analysis model and algorithms. Applied and Computational Harmonic Analysis, 34(1):30-56, 2013.
- B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):227-234, 1995.
- C.I. Nieblas, M.A. Alonso, R. Conte, and S. Villarreal. High performance heart sound segmentation algorithm based on matching pursuit. In IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pages 96-100, 2013.
- Q.g Nin, K. Chen, L. Yi, C. Fan, Y. Lu, and J. Wen. Image super-resolution via analysis sparse prior. IEEE Signal Processing Letters, 20(4):399-402, 2013.
- P.A. Olsen, O. Figen, J. Nocedal, and S.J. Rennie. Newton-like methods for sparse inverse covariance estimation. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Wein- berger, editors, Advances in Neural Information Processing Systems 25, pages 755-763. Curran Associates, Inc., 2012.
- B. Ophir, M. Elad, N. Bertin, and M.D. Plumbley. Sequential minimal eigenvalues -an approach to analysis dictionary learning. In Proceedings of the 19th European Signal Processing Conference (EUSIPCO-2011), Barcelona, Spain, August 2011.
- O. Oreifej, X. Li, and M. Shah. Simultaneous video stabilization and moving object detection in turbulence. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 35(2):450-462, 2013.
- Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. Orthogonal matching pursuit: recur- sive function approximation with applications to wavelet decomposition. In Conference Record of The 27th Asilomar Conference on Signals, Systems and Computers, pages 40-44 vol.1, November 1993.
- T. Peleg and M. Elad. Performance guarantees of the thresholding algorithm for the cosparse analysis model. IEEE Transactions on Information Theory, 59(3):1832-1845, 2013.
- T. Peleg, Y.C. Eldar, and M. Elad. Exploiting statistical dependencies in sparse rep- resentations for signal recovery. IEEE Transactions on Signal Processing, 60(5):2286- 2303, 2012.
- G. Peyré and J. Fadili. Learning analysis sparsity priors. In Proceedings of the 9th International Conference on Sampling, Theory and Applications (SAMPTA), page 1, 2011.
- G. Peyré, J. Fadili, and J.-L. Starck. Learning the morphological diversity. SIAM Journal on Imaging Sciences, 3(3):646-669, 2010.
- J. Portilla. Image restoration through l0 analysis-based sparse optimization in tight frames. In Proceedings of the 16th IEEE International Conference Image Processing (ICIP), pages 3909-3912, 2009.
- M. Protter, I. Yavneh, and M. Elad. Closed-form MMSE estimator for denoising signals under sparse reconstruction modeling. In Eleventh IEEEI conference, Eilat, Israel, December 2008.
- M. Protter, I. Yavneh, and M. Elad. Closed-form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary. IEEE Transactions on Signal Processing, 58(7):3471-3484, July 2010.
- A.E. Raftery and S. Lewis. How many iterations in the Gibbs sampler. Bayesian statistics, 4(2):763-773, 1992.
- I. Ram, I. Cohen, and M. Elad. Patch-ordering-based wavelet frame and its use in inverse problems. IEEE Transactions on Image Processing, 23(7):2779-2792, July 2014.
- M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief net- works. In Advances in Neural Information Processing Systems 20 (NIPS), pages 1185- 1192, 2007.
- B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki. Iterative thresholding algorithm for sparse inverse covariance estimation. In F. Pereira, C.J.C. Burges, L. Bot- tou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1574-1582. Curran Associates, Inc., 2012.
- S. Roth and M.J. Black. Fields of experts. International Journal of Computer Vision, 82(2):205-229, 2009.
- R. Rubinstein, A.M. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6):1045-1057, June 2010.
- R. Rubinstein, T. Peleg, and M. Elad. Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing, 61(3):661-677, 2013.
- R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical report, Dept. Computer Science, Technion, Israel, 2009.
- R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity: Learning sparse dic- tionaries for sparse signal approximation. IEEE Transactions on Signal Processing, 58(3):1553-1564, March 2010.
- M. Rudelson and R. Vershynin. Sparse reconstruction by convex relaxation: Fourier and gaussian measurements. In Proceedings of the 40th Annual Conference on Information Sciences and Systems, pages 207-212, March 2006.
- H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications, volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 2005.
- Y. Saad. Iterative methods for sparse linear systems, 2 nd edition. SIAM, 2003.
- M.F. Schiffner, T. Jansen, and G. Schmitz. Compressed sensing for fast image acquisi- tion in pulse-echo ultrasound. Biomedical Engineering-Biomedizinische Technik, 57(1), September 2012.
- P. Schniter, L.C. Potter, and J. Ziniel. Fast bayesian matching pursuit. In Information Theory and Applications Workshop, pages 326-333, 2008.
- I.W. Selesnick and M.A.T. Figueiredo. Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors. In Proceedings of SPIE, volume 7446, pages 74460D-74460D-15, 2009.
- S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-rank constraint. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International Conference on Machine Learning (ICML), ICML '11, pages 329-336, New York, NY, USA, June 2011. ACM.
- E.P. Simoncelli and E.H. Adelson. Noise removal via bayesian wavelet coring. In Proceedings of the IEEE International Conference Image Processing (ICIP), volume 1, pages 379-382 vol.1, September 1996.
- J.-L. Starck, M. Elad, and D.L. Donoho. Redundant multiscale transforms and their application for morphological component separation. In Advances in Imaging and Elec- tron Physics, volume 132 of Advances in Imaging and Electron Physics, pages 287-348. Elsevier, 2004.
- J.-L. Starck, F. Murtagh, and J.M. Fadili. Sparse Image and Signal Processing. Cam- bridge University Press, 2010.
- M. Tanabe, B. Lamia, H. Tanaka, D. Schwartzman, M. R. Pinsky, and J. Gorcsan III. Echocardiographic speckle tracking radial strain imaging to assess ventricular dyssyn- chrony in a pacing model of resynchronization therapy. Journal of the American Society of Echocardiography, 21(12):1382-1388, 2008.
- T. Taxt and R. Jirik. Superresolution of ultrasound images using the first and sec- ond harmonic signal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(2):163-175, February 2004.
- P.C. Tay, S.T. Acton, and J.A. Hossack. A transform method to remove ultrasound artifacts. In IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pages 110-114, 2006.
- P.C. Tay, S.T. Acton, and J.A. Hossack. A wavelet thresholding method to reduce ultrasound artifacts. Computerized Medical Imaging and Graphics, 35(1):42-50, 2011.
- A. Teske, B. De Boeck, P. Melman, G. Sieswerda, P. Doevendans, and M. Cramer. Echocardiographic quantification of myocardial function using tissue deformation imag- ing, a guide to image acquisition and analysis using tissue doppler and speckle tracking. Cardiovascular Ultrasound, 5(1):27, 2007.
- J.D. Thomas and D.N. Rubin. Tissue harmonic imaging: Why does it work? Journal of the American Society of Echocardiography, 11(8):803-808, August 1998.
- R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267-288, 1996.
- H. Torp. Clutter rejection filters in color flow imaging: a theoretical approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(2):417-424, March 1997.
- F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot. Clinical use of ultrasound tissue harmonic imaging. Ultrasound in Medicine and Biology, 25(6):889 -894, 1999.
- E. Treister and J.S. Turek. A block-coordinate descent approach for large-scale sparse inverse covariance estimation. In Advances in Neural Information Processing Systems 27, pages 927-935. Curran Associates, Inc., 2014.
- E. Treister, J.S. Turek, and I. Yavneh. Multilevel framework for the sparse inverse covariance estimation. In Optimization Workshop (OPT) in Advances in Neural Infor- mation Processing Systems 27, 2014.
- E. Treister and I. Yavneh. A multilevel iterated-shrinkage approach to l 1 penalized least-squares minimization. IEEE Transactions on Signal Processing, 60(12):6319-6329, 2012.
- J.A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Trans- actions on Information Theory, 50(10):2231-2242, 2004.
- Y. Tsaig and D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52:1289-1306, 2006.
- P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117(1-2):387-423, 2009.
- J.S. Turek, M. Elad, and I. Yavneh. Sparse signal separation with an off-line learned dictionary for clutter reduction in echocardiography. In Electrical Electronics Engineers in Israel (IEEEI), IEEE 28th Convention of, pages 1-5, December 2014.
- J.S. Turek, M. Elad, and I. Yavneh. Clutter mitigation in echocardiography using sparse signal separation. Accepted to International Journal in Biomedical Imaging, 2015.
- J.S. Turek, J. Sulam, M. Elad, and I. Yavneh. Fusion of ultrasound harmonic imag- ing with clutter removal using sparse signal separation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015.
- J.S. Turek, I. Yavneh, and M. Elad. On MMSE and MAP denoising under sparse repre- sentation modeling over a unitary dictionary. IEEE Transactions on Signal Processing, 59(8):3526-3535, August 2011.
- J.S. Turek, I. Yavneh, and M. Elad. On MAP and MMSE estimators for the co-sparse analysis model. Digital Signal Processing, 28(0):57 -74, 2014.
- J.S. Turek, I. Yavneh, M. Protter, and M. Elad. On MMSE and MAP de- noising under sparse representation modeling over a unitary dictionary. Tech- nical Report 2010-14, Dept. Computer Science, Technion, Israel, July 2010. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2010/CS/CS-2010-14.
- S. Vaiter, G. Peyré, C. Dossal, and J. Fadili. Robust sparse analysis regularization. IEEE Transactions on Information Theory, 59(4):2001-2016, 2013.
- R.F. Wagner, S.W. Smith, J.M. Sandrik, and H. Lopez. Statistics of speckle in ul- trasound b-scans. IEEE Transactions on Sonics and Ultrasonics, 30(3):156-163, May 1983.
- Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruc- tion based on shrinkage, subspace optimization, and continuation. SIAM Journal on Scientific Computing, 32(4):1832-1857, 2010.
- J. Wormann, S. Hawe, and M. Kleinsteuber. Analysis based blind compressive sensing. IEEE Signal Processing Letters, 20(5):491-494, 2013.
- S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7):2479-2493, July 2009.
- M. Yaghoobi, S. Nam, R. Gribonval, and M.E. Davies. Noise aware rator learning for approximately cosparse signals. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 5409-5412, 2012.
- M. Yaghoobi, S. Nam, R. Gribonval, and M.E. Davies. Constrained overcomplete anal- ysis operator learning for cosparse signal modelling. IEEE Transactions on Signal Processing, 61(9):2341-2355, 2013.
- A. Yu and L. Lovstakken. Eigen-based clutter filter design for ultrasound color flow imaging: a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(5):1096-1111, May 2010.
- A.C.H. Yu and R.S.C. Cobbold. Single-ensemble-based eigen-processing methods for color flow imaging -part I. the hankel-SVD filter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(3):559-572, 2008.
- A.C.H. Yu and R.S.C. Cobbold. Single-ensemble-based eigen-processing methods for color flow imaging -part II. the matrix pencil estimator. IEEE Transactions on Ultra- sonics, Ferroelectrics, and Frequency Control, 55(3):573-587, 2008.
- Y. Zhang, L. Wang, Y. Gao, J. Chen, and X. Shi. Automatic de-noising of doppler ultrasound signals using matching pursuit method. In Justinian Rosca, Deniz Erdogmus, Jose C. Principe, and Simon Haykin, editors, Independent Component Analysis and Blind Signal Separation, volume 3889 of Lecture Notes in Computer Science, pages 519-526. Springer Berlin Heidelberg, 2006.
- Y. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin. Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Transactions on Image Processing, 21(1):130-144, January 2012.
- M. Zibulevsky and M. Elad. L1-l2 optimization in signal and image processing. IEEE Signal Processing Magazine, 27(3):76-88, May 2010.
- M. Zibulevsky and B. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary. Neural Computation, 13(4):863-882, April 2001.
- H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67:301-320, 2005.
- G. Zwirn and S. Akselrod. Stationary clutter rejection in echocardiography. Ultrasound in Medicine and Biology, 32(1):43-52, 2006.