Universal priors for sparse modeling
2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
https://doi.org/10.1109/CAMSAP.2009.5413302Abstract
Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. In this work, we use tools from information theory to propose a sparsity regularization term which has several theoretical and practical advantages over the more standard 0 or 1 ones, and which leads to improved coding performance and accuracy in reconstruction tasks. We also briefly report on further improvements obtained by imposing low mutual coherence and Gram matrix norm on the learned dictionaries.
References (25)
- M. Aharon, M. Elad, and A. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans. SP, 54(11):4311-4322, Nov. 2006.
- A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding and modeling. IEEE Trans. IT, 44(6):2743-2760, 1998.
- A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):34-81, Feb. 2009.
- E. J. Candès, J. K. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informa- tion. IEEE Trans. IT, 52(2):489-509, 2006.
- E. J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl., 14(5):877-905, Dec. 2008.
- S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, 1998.
- Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley and Sons, Inc., 2 edition, 2006.
- I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. on Pure and Applied Mathematics, 57:1413-1457, 2004.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499, 2004.
- M. Elad. Optimized projections for compressed-sensing. IEEE Trans. SP, 55(12):5695-5702, Dec. 2007.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. IP, 54(12):3736- 3745, Dec. 2006.
- K. Engan, S. O. Aase, and J. H. Husoy. Multi-frame compression: Theory and design. Signal Processing, 80(10):2121-2140, Oct. 2000.
- J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc., 96(456):1348-1360, Dec. 2001.
- M. A. T. Figueiredo. Adaptive sparseness using Jeffreys prior. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Adv. NIPS, pages 697-704. MIT Press, 2001.
- R. Giryes, Y. C. Eldar, and M. Elad. Automatic parameter setting for iterative shrinkage methods. In IEEE 25-th Convention of Electronics and Electrical Engineers in Israel (IEEEI'08), Dec. 2008.
- B. Krishnapuram, L. Carin, M. A. T. Figueiredo, and A. J. Hartemink. Sparse multinomial logistic regression: Fast algorithms and generaliza- tion bounds. IEEE Trans. PAMI, 27(6):957-968, 2005.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Adv. NIPS, volume 21, 2009.
- J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Trans. IP, 17(1):53-69, Jan. 2008.
- S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. IEEE Trans. SP, 41(12):3397-3415, 1993.
- B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37:3311-3325, 1997.
- I. Ramirez, F. Lecumberry, and G. Sapiro. Sparse modeling with univer- sal priors and learned incoherent dictionaries. Submitted to NIPS, 2009.
- M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
- J. A. Tropp. Greed is good: Algorithmic results for sparse approxima- tion. IEEE Trans. IT, 50(10):2231-2242, Oct. 2004.
- H. Zou. The adaptive LASSO and its oracle properties. J. Am. Stat. Assoc., 101:1418-1429, 2006.
- H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36(4):1509-1533, 2008.