Academia.eduAcademia.edu

Outline

Quasi-Newton methods for multiobjective optimization problems

4OR

https://doi.org/10.1007/S10288-017-0363-1

Abstract

This work is an attempt to develop multiobjective versions of some wellknown single objective quasi-Newton methods, including BFGS, self-scaling BFGS (SS-BFGS), and the Huang BFGS (H-BFGS). A comprehensive and comparative study of these methods is presented in this paper. The Armijo line search is used for the implementation of these methods. The numerical results show that the Armijo rule does not work the same way for the multiobjective case as for the single objective case, because, in this case, it imposes a large computational effort and significantly decreases the speed of convergence in contrast to the single objective case. Hence, we consider two cases of all multi-objective versions of quasi-Newton methods: in the presence of the Armijo line search and in the absence of any line search. Moreover, the convergence of these methods without using any line search under some mild conditions is shown. Also, by introducing a multiobjective subproblem for finding the quasi-Newton multiobjective search direction, a simple representation of the Karush-Kuhn-Tucker conditions is derived. The H-BFGS quasi-Newton multiobjective optimization method provides a higher-order accuracy in approximating the second order curvature of the problem functions than the BFGS and SS-BFGS methods. Thus, this method has some benefits compared to the other methods as shown in the numerical results. All mentioned methods proposed in this paper are evaluated and compared with each other in different aspects. To do so, some well-known test problems and performance assessment criteria are employed. Moreover, these methods are compared with each other B Vahid Morovati

References (41)

  1. Bandyopadhyay S, Pal SK, Aruna B (2004) Multiobjective GAs, quantitative indices, and pattern classifi- cation. IEEE Trans Syst Man Cybern B Cybern 34(5):2088-2099
  2. Basirzadeh H, Morovati V, Sayadi A (2014) A quick method to calculate the super-efficient point in multi- objective assignment problems. J Math Comput Sci 10:157-162
  3. Basseur M (2006) Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem. 4OR 4(3):255-258
  4. Benson H, Sayin S (1997) Towards finding global representations of the efficient set in multiple objective mathematical programming. Nav Res Logist 44(1):47-67
  5. Custodio AL, Madeira JFA, Vaz AIF, Vicente LN (2011) Direct multisearch for multiobjective optimization. SIAM J Optim 21(3):1109-1140
  6. Da Silva CG, Climaco J, Almeida Filho A (2010) The small world of efficient solutions: empirical evidence from the bi-objective 0, 1-knapsack problem. 4OR 8(2):195-211
  7. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631-657
  8. Dolan ED, More JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201-213
  9. Drummond LG, Iusem AN (2004) A projected gradient method for vector optimization problems. Comput Optim Appl 28:5-29
  10. Drummond LMG, Svaiter BF (2005) A steepest descent method for vector optimization. J Comput Appl Math 175:395-414
  11. Ehrgott M (2005) Multicriteria optimization. Springer, Berlin
  12. Eskelinen P, Miettinen K (2012) Trade-off analysis approach for interactive nonlinear multiobjective opti- mization. OR Spectrum 34(4):803-816
  13. Fliege J (2004) Gap-free computation of pareto-points by quadratic scalarizations. Math Methods Oper Res 59(1):69-89
  14. Fliege J (2006) An efficient interior-point method for convex multicriteria optimization problems. Math Oper Res 31(4):825-845
  15. Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria optimization. Math Methods Oper Res 51:479-494
  16. Fliege J, Drummond LMG, Svaiter BF (2009) Newton's method for multiobjective optimization. SIAM J Optim 20:602-626
  17. Fliege J, Heseler A (2002) Constructing approximations to the efficient set of convex quadratic multiobjec- tive problems. Ergebnisberichte Angewandte Mathematik 211, Univ. Dortmund, Germany
  18. Gopfert A, Nehse R (1990) Vektoroptimierung: theorie, verfahren und anwendungen. B. G. Teubner Verlag, Leipzig Hillermeier C: Nonlinear Multiobjective Optimization: a generalized homotopy approach. ISNM 25, Berlin (2001)
  19. Jin Y, Olhofer M, Sendhoff B (2001) Dynamic weighted aggregation for evolutionary multiobjective opti- mization: why does it work and how? In: Proceedings of the genetic and evolutionary computation conference, pp 1042-1049 (2001)
  20. Kim IY, De Weck OL (2005) Adaptive weighted sum method for bi-objective optimization: pareto front generation. Struct Multidiscip Optim 29:149-158
  21. Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers, TIK Report 214. Computer Engineering and Networks Laboratory, ETH Zurich
  22. Kuk H, Tanino T, Tanaka M (1997) Trade-off analysis for vector optimization problems via scalarization. J Inf Optim Sci 18(1):75-87
  23. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comut 10:263-282
  24. Luc DT (1988) Theory of vector optimization. Springer, Berlin
  25. Morovati V, Pourkarimi L, Basirzadeh H (2016) Barzilai and Borwein's method for multiobjective opti- mization problems. Numer Algorithms 72(3):539-604
  26. Nocedal J, Wright S (2006) Numerical optimization. Springer, New York Povalej Z (2014) Quasi-Newton's method for multiobjective optimization. J Comput Appl Math 255:765- 777
  27. Preuss M, Naujoks B, Rudolph G (206) Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson TP et al (eds) Proceedings of the ninth international conference on parallel problem solving from nature (PPSN IX), Springer, Berlin, pp 513-522 (2006)
  28. Qu S, Goh M, Chan FTS (2011) Quasi-Newton methods for solving multiobjective optimization. Oper Res Lett 39:397-399
  29. Qu S, Goh M, Liang B (2013) Trust region methods for solving multiobjective optimisation. Optim Method Softw 28(4):796-811
  30. Sakawa M, Yano H (1990) Trade-off rates in the hyperplane method for multiobjective optimization prob- lems. Eur J Oper Res 44(1):105-118
  31. Sayadi-Bander A, Morovati V, Basirzadeh H (2015) A super non-dominated point for multi-objective transportation problem. Appl Appl Math 10(1):544-551
  32. Sayadi-bander A, Kasimbeyli R, Pourkarimi L (2017) A coradiant based scalarization to characterize approximate solutions of vector optimization problems with variable ordering structures. Oper Res Lett 45(1):93-97
  33. Sayadi-bander A, Pourkarimi L, Kasimbeyli R, Basirzadeh H (2017) Coradiant sets and ε-efficiency in multiobjective optimization. J Glob Optim 68(3):587-600. https://doi.org/10.1007/s10898-016-0495- 4
  34. Schandl B, Klamroth K, Wiecek MM (2001) Norm-based approximation in bicriteria programming. Comput Optim Appl 20(1):23-42
  35. Segura C, Coello CAC, Miranda G, Len C (2013) Using multi-objective evolutionary algorithms for single- objective optimization. 4OR 11(3):201-228
  36. Sun W, Yuan YX (2006) Optimization theory and methods: nonlinear programming. Springer, New York Tappeta RV, Renaud JE (1999) Interactive multiobjective optimization procedure. AIAA J 37(7):881-889
  37. Villacorta KDV, Oliveira PR, Soubeyran A (2014) A trust-region method for unconstrained multiobjective problems with applications in satisficing processes. J Optim Theory Appl 160:865-889
  38. Zhang J, Xu C (2001) Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J Comput Appl Math 137(2):269-278
  39. Zhang JZ, Deng NY, Chen LH (1999) New quasi-Newton equation and related methods for unconstrained optimization. J Optim Theory Appl 102(1):147-167
  40. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comut 8:173-195
  41. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multi- objective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117-132