Academia.eduAcademia.edu

Outline

Standard Model Particles from Split Octonions

2015, arXiv: General Physics

Abstract

We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

References (20)

  1. Schafer R. Introduction to Non-Associative Algebras. Dover, NY 1995.
  2. Springer T.A and Veldkamp F.D. Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics, Springer, Berlin 2000.
  3. Baez J.C. Bull. Am. Math. Soc., 2002, v.39, 145, arXiv: math/0105155 [math.RA].
  4. Okubo S. Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge Univ. Press, Cambridge, 1995.
  5. Finkelstein D. Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg. Springer, Berlin 1996.
  6. Gürsey F. & Tze C. On the Role of Division, Jordan and Related Alge- bras in Particle Physics. World Scientific, Singapore 1996.
  7. Lõhmus J., Paal P. & Sorgsepp L. Nonassociative Algebras in Physics, Hadronic Press, Palm Harbor 1994; Acta Appl. Math., 1998, v.50, 3.
  8. Gogberashvili M. Int. J. Mod. Phys. A, 2006, v.21, 3513, arXiv: hep- th/0505101; J. Phys. A, 2006, v.39, 7099, arXiv: hep-th/0512258.
  9. Gogberashvili M. arXiv: hep-th/0212251; Adv. Appl. Clif. Alg., 2005, v.15, 55, arXiv: hep-th/0409173; Adv. Math. Phys., 2009, 483079, arXiv: 0808.2496 [math-ph].
  10. Gogberashvili M. & Sakhelashvili O. Adv. Math. Phys., 2015, 196708, arXiv: 1506.01012 [math-ph].
  11. Manogue C.A. & Schray J. J. Math. Phys., 1993, v.34, 3746. 12. Cartan É. Sur la structure des groupes de transformations finis et conti- nus. Thèse, Paris 1894, p.146; Ann. Sci. Ecole Nonn. Sup., 1914, v.31, 263; Reprinted in: Oeuvres complètes, Gauthier-Villars, Paris 1952.
  12. Beckers J., Hussin V. & Winternitz P. J. Math. Phys., 1986, v.27, 2217.
  13. Günaydin M. & Gürsey F. J. Math. Phys., 1973, v.14, 1651; Lett. Nuovo Cim., 1973, v.6, 401; Phys. Rev. D, 1974, v.9, 3387.
  14. Cole E.A.B. Nuov. Cim. A, 1977, v.40, 171; J. Phys. A, 1980, v.13, 109.
  15. Gogberashvili M. Phys. Lett. B, 2000, v.484, 124, arXiv: hep- ph/0001109.
  16. Gogberashvili M. & Midodashvili P. Phys. Lett. B, 2001, v.515, 447, arXiv: hep-ph/0005298; Europhys. Lett., 2003, v.61, 308, arXiv: hep- th/0111132.
  17. Christian J. Int. J. Mod. Phys. D, 2004, v.13, 1037, arXive: gr-qc/ 0308028; in Relativity and the Dimensionality of the World, ed. V. Petkov, Springer, NY 2007, arXiv: gr-qc/0610049.
  18. Velev M.V. Phys. Essays, 2012, v.25, 3.
  19. Sommerfeld A. Atombau und Spektrallinien, II Band. Vieweg, Braun- schweig 1953.
  20. Gogberashvili M. Eur. Phys. J. C, 2014, v.74, 3200, arXiv: 1410.4136 [physics.gen-ph].