An octonion model for physics
2000
Abstract
The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric
References (38)
- H. Albuquerque and S. Majid, Quasialgebra structure of the octo- nions, J. of Algebra 220 (1999) no. 1, 188-224.
- S. L. Altmann, Icons and Symmetries, Clarendon Press, Oxford, 1992.
- G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1984.
- K. I. Appel and W. Haken, Every Planar Map is Four Col- orable, American Mathematical Society, Providence, RI, 1989.
- D. Bar-Natan, Lie algebras and the four color theorem, Combina- torica 17 (1997) 43-52.
- A. V. Borisov and A. V. Tsygvintsev, Kovalevskaya's method in the dynamics of a rigid body, (Russ.), Mat. Mekh.61 (1997) no. 1, 30-36; Engl. Transl. J. Appl. Math. Mech., 27-32.
- H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946) 561-578.
- -, Geometry in Lectures on Modern Mathematics, vol. III, T. L. Saaty, Ed., 58-94, John Wiley, New York, 1965.
- -, Regular Polytopes, Dover Publ., New York, 1973.
- A. Crumeyrolle, Orthogonal and Symplectic Clifford Alge- bras: Spinor Structures, Kluwer, Dordrecht, 1990.
- G. M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics, Kluwer, Dordrecht, 1994.
- H. Freudenthal, Zur ebenen Oktavegeometrie, Proc. Kon. Akad. Wet. Amsterdam A56 (1953) 195-200.
- A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Modern Phys. 71 1999, no. 4, 983-1084.
- F. Gűrsey and C.-H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific, River Edge, NJ, 1996.
- F. Harary and P. C. Kainen, The cube of a path is maximal planar, Bull. of the Inst. of Combinatorics and its Appl. 7 (1993) 55-56.
- G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1959.
- P. C. Kainen, A graph-theoretic model for time, in Proc. CASYS'2000, Liege, 2000.
- -, Quantum interpretations of the Four Color Theorem, technical report, GU-PCK-99-01.
- -, Is the Four Color Theorem true? Geombinatorics 3 (1993) 41-56.
- C. Kassel, Quantum Groups, Springer, New York, 1995.
- L. H. Kauffman, Map coloring, q-deformed spin networks, and Turaev-Viro invariants for 3-manifolds, (Proc. of Conf. on Quantum Groups, Como, 1991), Intl. J. Mod. Phys. B 6 (1992) 1765-1794.
- -, Map coloring and the vector cross product, J. Combin. Th. B 48 (1990) 145-154.
- L. H. Kauffman and H. Saleur, An algebraic approach to the planar coloring problem, Commun. Math. Phys.152 (1993) 565-590.
- A. Katz, Matching rules and quasiperiodicity: the octagonal tilings, in Beyond Quasicrystals (Les Houches, 1994), 141-189, Springer, Berlin, 1995.
- F. Klein, The Mathematical Theory of the Top, Charles Scrib- ner's Sons, New York, 1897.
- F. W. Lawvere and S. H. Schanuel, Eds., Categories in Contin- uum Physics, Lecture Notes in Mathematics No. 1174, Springer, Berlin, 1986.
- A. Lichnerowicz, Geometrie et relativite in Development of Mathematics 1900-1950 (Luxembourg, 1992), 431-441, Birkhauser, Basel, 1994.
- M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathematics No. 1575, Springer, Berlin, 1994.
- S. Okubo, Introduction to Octonion and Other Non- Associative Algebras in Physics, Montroll Memorial Lecture Se- ries in Mathematical Physics, 2, Cambridge University Press, 1995.
- T. L. Saaty and P. C. Kainen, The Four-Color Problem, Dover Publ., New York, 1986 (orig. McGraw-Hill, 1977).
- R. D. Schafer, An Introduction to Nonassociative Algebras, Dover Publ., New York, 1994 (orig. Acad. Press, 1966).
- D. Sleator, R. Tarjan, and W. Thurston. Rotation Distance, Trian- gulations, and Hyperbolic Geometry. J. Amer. Math. Soc. 1, 647- 681, 1988.
- R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, 2001.
- J. Tits, Le plan projectif des octaves et les groupes de Lie excep- tionels, Bull. Acad. Roy. Belg. Sci. 39 (1953) 300-329.
- Yu. S. Vladimirov, The sources and development of binary ge- ometrophysics. (Russian) Studies in the History of Physics and Mechanics, 1991-1992, 77-100, Nauka, Moscow, 1997.
- J. P. Ward, Quaternions and Cayley Numbers, Kluwer, Dor- drecht, 1997.
- I. M. Yaglom, Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in the Nineteenth Century, Birkhaűser, Boston, 1988.
- Ziegler, Polytopes, 1999.