Academia.eduAcademia.edu

Outline

An octonion model for physics

2000

Abstract

The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric

References (38)

  1. H. Albuquerque and S. Majid, Quasialgebra structure of the octo- nions, J. of Algebra 220 (1999) no. 1, 188-224.
  2. S. L. Altmann, Icons and Symmetries, Clarendon Press, Oxford, 1992.
  3. G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1984.
  4. K. I. Appel and W. Haken, Every Planar Map is Four Col- orable, American Mathematical Society, Providence, RI, 1989.
  5. D. Bar-Natan, Lie algebras and the four color theorem, Combina- torica 17 (1997) 43-52.
  6. A. V. Borisov and A. V. Tsygvintsev, Kovalevskaya's method in the dynamics of a rigid body, (Russ.), Mat. Mekh.61 (1997) no. 1, 30-36; Engl. Transl. J. Appl. Math. Mech., 27-32.
  7. H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946) 561-578.
  8. -, Geometry in Lectures on Modern Mathematics, vol. III, T. L. Saaty, Ed., 58-94, John Wiley, New York, 1965.
  9. -, Regular Polytopes, Dover Publ., New York, 1973.
  10. A. Crumeyrolle, Orthogonal and Symplectic Clifford Alge- bras: Spinor Structures, Kluwer, Dordrecht, 1990.
  11. G. M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics, Kluwer, Dordrecht, 1994.
  12. H. Freudenthal, Zur ebenen Oktavegeometrie, Proc. Kon. Akad. Wet. Amsterdam A56 (1953) 195-200.
  13. A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Modern Phys. 71 1999, no. 4, 983-1084.
  14. F. Gűrsey and C.-H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific, River Edge, NJ, 1996.
  15. F. Harary and P. C. Kainen, The cube of a path is maximal planar, Bull. of the Inst. of Combinatorics and its Appl. 7 (1993) 55-56.
  16. G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1959.
  17. P. C. Kainen, A graph-theoretic model for time, in Proc. CASYS'2000, Liege, 2000.
  18. -, Quantum interpretations of the Four Color Theorem, technical report, GU-PCK-99-01.
  19. -, Is the Four Color Theorem true? Geombinatorics 3 (1993) 41-56.
  20. C. Kassel, Quantum Groups, Springer, New York, 1995.
  21. L. H. Kauffman, Map coloring, q-deformed spin networks, and Turaev-Viro invariants for 3-manifolds, (Proc. of Conf. on Quantum Groups, Como, 1991), Intl. J. Mod. Phys. B 6 (1992) 1765-1794.
  22. -, Map coloring and the vector cross product, J. Combin. Th. B 48 (1990) 145-154.
  23. L. H. Kauffman and H. Saleur, An algebraic approach to the planar coloring problem, Commun. Math. Phys.152 (1993) 565-590.
  24. A. Katz, Matching rules and quasiperiodicity: the octagonal tilings, in Beyond Quasicrystals (Les Houches, 1994), 141-189, Springer, Berlin, 1995.
  25. F. Klein, The Mathematical Theory of the Top, Charles Scrib- ner's Sons, New York, 1897.
  26. F. W. Lawvere and S. H. Schanuel, Eds., Categories in Contin- uum Physics, Lecture Notes in Mathematics No. 1174, Springer, Berlin, 1986.
  27. A. Lichnerowicz, Geometrie et relativite in Development of Mathematics 1900-1950 (Luxembourg, 1992), 431-441, Birkhauser, Basel, 1994.
  28. M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathematics No. 1575, Springer, Berlin, 1994.
  29. S. Okubo, Introduction to Octonion and Other Non- Associative Algebras in Physics, Montroll Memorial Lecture Se- ries in Mathematical Physics, 2, Cambridge University Press, 1995.
  30. T. L. Saaty and P. C. Kainen, The Four-Color Problem, Dover Publ., New York, 1986 (orig. McGraw-Hill, 1977).
  31. R. D. Schafer, An Introduction to Nonassociative Algebras, Dover Publ., New York, 1994 (orig. Acad. Press, 1966).
  32. D. Sleator, R. Tarjan, and W. Thurston. Rotation Distance, Trian- gulations, and Hyperbolic Geometry. J. Amer. Math. Soc. 1, 647- 681, 1988.
  33. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, 2001.
  34. J. Tits, Le plan projectif des octaves et les groupes de Lie excep- tionels, Bull. Acad. Roy. Belg. Sci. 39 (1953) 300-329.
  35. Yu. S. Vladimirov, The sources and development of binary ge- ometrophysics. (Russian) Studies in the History of Physics and Mechanics, 1991-1992, 77-100, Nauka, Moscow, 1997.
  36. J. P. Ward, Quaternions and Cayley Numbers, Kluwer, Dor- drecht, 1997.
  37. I. M. Yaglom, Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in the Nineteenth Century, Birkhaűser, Boston, 1988.
  38. Ziegler, Polytopes, 1999.