Academia.eduAcademia.edu

Outline

Quantum Logical Neural Networks

2008

https://doi.org/10.1109/SBRN.2008.9

Abstract

Quantum analogues of the (classical) logical neural networks (LNN) models are proposed in (q-LNN for short). We shall here further develop and investigate the q-LNN composed of the quantum analogue of the probabilistic logic node (PLN) and the multiple-valued PLN (MPLN) variations, dubbed q-PLN and q-MPLN respectively. Besides a clearer mathematical description, we present a computationally efficient and simply described quantum learning algorithm in contrast to what has been proposed to the quantum weighted version.

References (31)

  1. I. Aleksander. Self-adaptive universal logic circuits. Elec- tronics Letters, 2(8):321-322, 1966.
  2. M. V. Altaisky. Quantum neural network. Technical report, Joint Institute for Nuclear Research, Russia, 2001.
  3. E. C. Behrman, L. R. Nash, J. E. Steck, V. G. Chandrashekar, and S. R. Skinner. Simulations of quantum neural networks. Information Sciences, 128(3-4):257-269, 2000.
  4. A. I. Bobenko, P. Schröder, and J. M. Sullivan. Discrete Differential Geometry (Oberwolfach Seminars). Birkhäuser Basel, March 2008.
  5. A. P. Braga, A. P. L. F. Carvalho, and T. B. Ludermir. Redes Neurais Artificiais: Teoria e Aplicaes. LTC, 2000.
  6. W. R. de Oliveira, W. Galindo, A. Leonel, J. Pereira, and A. J. Silva. Redes neurais quânticas sem peso. In 2 o Worshop-Escola em Computac ¸ão e Informac ¸ão Quântica, WECIQ 2007, Campina Grande, Pb, Outubro 2007.
  7. D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Ser. A, A400:97-117, 1985.
  8. D. Deutsch. Quantum computational networks. Proceedings of the Royal Society of London, A 425:73-90, 1989.
  9. J. Faber and G. Giraldi. Quantum models of arti- ficial neural networks. Electronically available: http://arquivosweb.lncc.br/pdfs/QNN-Review.pdf.
  10. R. Feynman. Simulating physics with computers. Interna- tional Journal of Theoretical Physics, 21:467, 1982.
  11. V. Giovannetti, S. Lloyd, and L. Maccone. Quantum random access memory. Physical Review Letters, 100(16):160501, 2008.
  12. G. Giraldi, R. Portugal, and R. Thess. Genetic algorithms and quantum computation. arXiv:cs/0403003v1 [cs.NE], 2004.
  13. S. Gupta and R. K. P. Zia. Quantum neural networks. Jour- nal of Computer and System Sciences, 63:355-383, 2001.
  14. R. F. Herbster, W. L. Andrade, H. M. Gomes, and P. D. L. Machado. O estado da arte em redes neurais artificiais quânticas. Rev. Eletr. de Inic. Cient., IV:1-8, 2004.
  15. M. Hillery, M. Ziman, and V. Bužek. Approximate programmable quantum processors. Physical Review A, 73(2):022345, 2006.
  16. K. Hoffman and R. Kunze. Linear Algebra. Prentic-Hall, 1971.
  17. S. C. Kak. On quantum neural computing. Information Sci- ences, 83(3&4):143-160, 1995.
  18. N. Kouda, N. Matsui, H. Nishimura, and F. Peper. Qubit neural network and its learning efficiency. Neural Comput & Applic (2005) 14:114121, 2005.
  19. T. B. Ludermir, A. Carvalho, A. P. Braga, and M. C. P. Souto. Weightless neural models: A review of current and past works. Neural Computing Surveys 2, 41-61, 1999.
  20. J. Madore. An Introduction to Noncommutative Differential Geometry & Its Physical Applications. CUP, 2000.
  21. W. S. McCulloch and W. Pitts. A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1930.
  22. T. Menneer and A. Narayanan. Quantum-inspired neural networks. Technical Report R329, Department of Computer Science, University of Exeter, Exeter, UK, 1995.
  23. N. D. Mermin. From cbits to qbits: Teaching computer sci- entists quantum mechanics. American Journal of Physics, 71:23, 2003.
  24. A. Narayanan and T. Menneer. Quantum artificial neural networks architectures and components. Information Sci- ences, 128(3-4):231-255, 2000.
  25. M. A. Nielsen and I. L. Chuang. Programmable quantum gate arrays. Phys. Rev. Lett., 79(2):321-324, Jul 1997.
  26. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
  27. F. Shafee. Neural networks with c-NOT gated nodes. Tech- nical report, Department of Physics, Princeton University, Princeton, USA, 2004.
  28. P. W. Shor. Polynomial-time algorithms for prime factoriza- tion and discrete logarithms on a quantum computer. SIAM J.SCI.STATIST.COMPUT., 26:1484, 1997.
  29. N. Toronto and D. Ventura. Learning quantum operators from quantum state pairs. In IEEE World Congress on Com- putational Intelligence, pages 2607-2612, July 2006.
  30. D. Ventura and T. Martinez. Quantum associative memory. Available at arXiv.org:quant-ph/9807053, 1998.
  31. R. Zhou and Q. Ding. Quantum m-p neural network. Int J Theor Phys, 2007.