Abstract
We present the formulae for twist quantization of g2, corresponding to the solution of classical YB equation with support in the 8-dimensional Borel subalgebra of g2. The considered chain of twists consists of the four factors describing the four steps of quantization: Jordanian twist, the two twist factors extending Jordanian twist and the deformed Jordanian or in second variant additional Abelian twist. The first two steps describe as well the sl(3) quantization. The coproducts are calculated for each step in explicite form, and for that purpose we present new formulas for the calculation of similarity transformations on tensor product. We introduce new basic generators in universal enveloping algebra U (g2) which provide nonlinearities in algebraic sector maximally simplifying the deformed coproducts.
References (27)
- M. Günaydin and F. Gürsey, J. Math. Phys. 14, 1651 (1973).
- A.M. Bincer and K. Riesselmann, hep-th/9306062.
- D.T. Sviridov, Yu. F. Smirnov and V.N. Tolstoy, Rep. Math. Phys. 7, 349 (1975).
- R. Le Blanc and D.J. Rowe, J. Math. Phys. 29, 767 (1988).
- K. Holland, P. Minkowski, M. Pepe and U.-J. Wiese, hep-lat/0302023.
- S. Khoroshkin and V.N. Tolstoy, Commun. Math. Phys. 141, 599 (1991).
- V.G. Drinfeld, Leningrad Math. J. 1, 321 (1990);
- P.P. Kulish, V.D. Lyakhovsky and A.I. Mudrov, Journ. Math. Phys. 40, 4569 (1999);
- P.P. Kulish, V.D. Lyakhovsky and M.A. del Olmo, Journ. Phys.A: Math. Gen. 32, 8671 (1999).
- P.P. Kulish and V.D. Lyakhovsky, Journ. Phys. A: Math. Gen. 33, L279 (2000).
- J. Lukierski, V. Lyakhovsky and M. Mozrzymas, Mod. Phys. Lett. A18, 753 (2003).
- V.D. Lyakhovsky and M.A. del Olmo, J. Phys.A: Math. Gen. 32, 4541 (1999); 32, 5343 (1999).
- V.D. Lyakhovsky, Twist Deformations in Dual Coordinates, Preprint SPbU-IP-03-08, (2003); math.QA/0312185.
- M. Duff, B. Nilsson and C. Pope, Phys. Rep. 130, 1 (1986).
- G. Papadopoulos and P.K. Townsend, Phys. Lett. B357, 300 (1995).
- M. Cvetic, G. Gibbons, H. Lu and C. Pope, Phys. Lett. B534, 172 (2002);
- Phys. Rev. D65, 106004 (2002).
- E. Witten, hep-th/0108165; hep-ph/0201018.
- P. Ramond, "Exceptional Groups and Physics", hep-th/0301050.
- P. Podleś, Lett. Math. Phys. 14, 193 (1987); 18, 107 (1988).
- V.N. Tolstoy, in: Proc. of Internat. Workshop "Supersymmetries and Quantum Symmetries (SQS'03)", Russia, Dubna, July, 2003, Eds: E. Ivanov and A. Pashnev, publ. JINR, Dubna, p. 204 (2004); http://xxx.lanl.gov/abs/math.QA./0402433.
- A.A. Belavin and V.G. Drinfeld, Funct. Anal. and its Appl. 16, 1 (1983).
- O.V. Ogievetsky, Suppl. Rendiconti Cir. Math. Palermo Serie II 37, 185 (1993).
- D.E. Knuth, "Convolution Polynomials", Preprint Stanford University, http://www-cs-faculty.stanford.edu∼knuth/papers/cp.tex.gz
- S.A. Joni and G.-C. Rota, "Coalgebras and Bialgebras in Combinatorics", Studies in Applied Mathematics 61, 93-139 (1979).
- V.D. Lyakhovsky, Proceedings XXX Karpacz Winter School of Theoretical Physics: Quantum Groups. Formalism and Applications, Eds. J. Lukierski et al., 93-102 (1995), Polish Scientific Publishers PWN.
- V.G. Drinfeld, Algebra and Analysis 1, 30 (1989).