Academia.eduAcademia.edu

Outline

Quantization of Lie bialgebras, 3

1996

Abstract

In this paper we construct explicitly the quantization of Lie bialgebras of a finite dimensional simple Lie algebra. by reducing the problem of quantization of the algebra of $\g$-valued functions on a curve with many punctures to the case of one puncture

References (15)

  1. Alekseev, A., Grosse, H., and Schomerus, V., Combinatorial quantization of the Hamil- tonian Chern-Simons theory I, CMP 172 (1995).
  2. Alekseev, A., Grosse, H., and Schomerus, V., Combinatorial quantization of the Hamil- tonian Chern-Simons theory II, CMP 174 (1995).
  3. A.A.Belavin, Discrete groups and integrability of quantum systems, Funct. Anal. Appl. 14 (1980), no. 4.
  4. A.A.Belavin, Dynamical symmetry of integrable quantum systems, Nucl. Phys. B180(FS2) (1981), no. 2, 189-200.
  5. A.A.Belavin and V.G.Drinfeld, Solutions of the classical Yang-Baxter equations for simple Lie algebras, Funct. Anal. Appl. 16 (1982), 159-180.
  6. I.V.Cherednik, On R-matrix quantization of formal loop groups, Group Theoretical Methods in Physics, VNU Publ., (1986).
  7. I.V.Cherednik, On properties of factorized S-matrices in terms of elliptic functions, Yad. Fiz. 36 (1982), no. 2, 549-557.
  8. V.G.Drinfeld, Quantum groups, Proc. Int. Congr. Math. (Berkeley, 1986) 1, 798-820.
  9. V.G.Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Doklady 32 (1985).
  10. V.G.Drinfeld, On almost cocommutative Hopf algebras, Len. Math.J. 1 (1990), 321-342.
  11. P.Etingof and D. Kazhdan, Quantization of Lie bialgebras, I, q-alg 9506005, Selecta math. 2 (1996), no. 1, 1-41.
  12. P.Etingof and D. Kazhdan, Quantization of Lie bialgebras, II,, q-alg 9701038 (1996).
  13. N.Yu.Reshetikhin, L.A.Takhtajan, and L.D.Faddeev,, Quantization of Lie groups and Lie algebras, Len. Math. J. . 1 (1990), 193-225.
  14. N.Yu.Reshetikhin and M.A.Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
  15. L.Takhtajan, Solutions of the triangle equations with Z n × Z n -symmetry and matrix analogs of the Weierstrass zeta and sigma-functions, Zapiski Nauch. Sem. LOMI 133 (1984), 258-276.