Quantization of Lie bialgebras, 3
1996
Abstract
In this paper we construct explicitly the quantization of Lie bialgebras of a finite dimensional simple Lie algebra. by reducing the problem of quantization of the algebra of $\g$-valued functions on a curve with many punctures to the case of one puncture
References (15)
- Alekseev, A., Grosse, H., and Schomerus, V., Combinatorial quantization of the Hamil- tonian Chern-Simons theory I, CMP 172 (1995).
- Alekseev, A., Grosse, H., and Schomerus, V., Combinatorial quantization of the Hamil- tonian Chern-Simons theory II, CMP 174 (1995).
- A.A.Belavin, Discrete groups and integrability of quantum systems, Funct. Anal. Appl. 14 (1980), no. 4.
- A.A.Belavin, Dynamical symmetry of integrable quantum systems, Nucl. Phys. B180(FS2) (1981), no. 2, 189-200.
- A.A.Belavin and V.G.Drinfeld, Solutions of the classical Yang-Baxter equations for simple Lie algebras, Funct. Anal. Appl. 16 (1982), 159-180.
- I.V.Cherednik, On R-matrix quantization of formal loop groups, Group Theoretical Methods in Physics, VNU Publ., (1986).
- I.V.Cherednik, On properties of factorized S-matrices in terms of elliptic functions, Yad. Fiz. 36 (1982), no. 2, 549-557.
- V.G.Drinfeld, Quantum groups, Proc. Int. Congr. Math. (Berkeley, 1986) 1, 798-820.
- V.G.Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Doklady 32 (1985).
- V.G.Drinfeld, On almost cocommutative Hopf algebras, Len. Math.J. 1 (1990), 321-342.
- P.Etingof and D. Kazhdan, Quantization of Lie bialgebras, I, q-alg 9506005, Selecta math. 2 (1996), no. 1, 1-41.
- P.Etingof and D. Kazhdan, Quantization of Lie bialgebras, II,, q-alg 9701038 (1996).
- N.Yu.Reshetikhin, L.A.Takhtajan, and L.D.Faddeev,, Quantization of Lie groups and Lie algebras, Len. Math. J. . 1 (1990), 193-225.
- N.Yu.Reshetikhin and M.A.Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
- L.Takhtajan, Solutions of the triangle equations with Z n × Z n -symmetry and matrix analogs of the Weierstrass zeta and sigma-functions, Zapiski Nauch. Sem. LOMI 133 (1984), 258-276.