The entropy of alpha-continued fractions: numerical results
2010, Nonlinearity
https://doi.org/10.1088/0951-7715/23/10/005Abstract
We consider the one-parameter family of interval maps arising from generalized continued fraction expansions known as alpha-continued fractions. For such maps, we perform a numerical study of the behaviour of metric entropy as a function of the parameter. The behaviour of entropy is known to be quite regular for parameters for which a matching condition on the orbits of the endpoints holds. We give a detailed description of the set M where this condition is met: it consists of a countable union of open intervals, corresponding to different combinatorial data, which appear to be arranged in a hierarchical structure. Our experimental data suggest that the complement of M is a proper subset of the set of bounded-type numbers, hence it has measure zero. Furthermore, we give evidence that the entropy on matching intervals is smooth; on the other hand, we can construct points outside of M on which it is not even locally monotone.
References (20)
- A. Broise, Transformations dilatantes de l'intervalle et théorèmes limites, Astérisque 238 (1996) 1-109
- M. Charves, Démonstration de la périodicité des en fractions continues, engendrées par les racines d'une èquation du deuxième degré., Bull. Sci. Math. (2), 1, 41-43 (1887).
- R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1994
- H. Hennion, Sur un Théorème Spectral et son Application aux Noyaux Lipchitziens, Proc. of the American Mathematical Society, Vol. 118, No. 2 (Jun., 1993), 627-634
- G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), 313-333
- G. Keller, C. Liverani, Stability of the Spectrum for Transfer Opera- tors, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) vol. 28 (1999), 141-152
- C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39
- Y. Hartono, C. Kraaikamp, A note on Hurwitzian numbers, Tokyo J. Math. 25 (2002), no. 2, 353-362.
- L. Luzzi, S. Marmi, On the entropy of Japanese continued frac- tions, Discrete and continuous dynamical systems, 20 (2008), 673-711, arXiv:math.DS/0601576v2
- A. Cassa, P. Moussa, S. Marmi, Continued fractions and Brjuno func- tions, J. Comput. Appl. Math. 105 (1995), 403-415
- H. Nakada, Metrical theory for a class of continued fraction transforma- tions and their natural extensions, Tokyo J. Math. 4 (1981), 399-426
- H. Nakada, R. Natsui, The non-monotonicity of the entropy of α- continued fraction transformations, Nonlinearity 21 (2008), 1207-1225
- V.A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499-530; English translation: Amer. Math. Soc. Transl. (2) 39 (1964), 1-36
- M. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80
- F. Schweiger, Ergodic theory of fibred systems and metric number theory, Oxford Sci. Publ. Clarendon Press, Oxford, 1995
- G.Tiozzo The entropy of α-continued fractions: analytical results, preprint
- M. Viana, Stochastic Dynamics of Deterministic Systems, Lecture Notes XXI. Braz. Math. Colloq. IMPA, Rio de Janeiro, 1997
- R. Zweimüller, Ergodic structure and invariant densities of non- Markovian interval maps with indifferent fixed points, Nonlinearity 11 (1998), 1263-1276
- Dipartimento di Matematica, Università di Pisa, Largo Bruno Pon- tecorvo 5, 56127 Pisa, Italy. e-mail: carminat@dm.unipi.it Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy. e- mail: s.marmi@sns.it
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy. e- mail: a.profeti@sns.it Department of Mathematics, Harvard University, 1 Oxford St, Cam- bridge MA 02138, U.S.A. e-mail: tiozzo@math.harvard.edu