Academia.eduAcademia.edu

Outline

The entropy of alpha-continued fractions: numerical results

2010, Nonlinearity

https://doi.org/10.1088/0951-7715/23/10/005

Abstract

We consider the one-parameter family of interval maps arising from generalized continued fraction expansions known as alpha-continued fractions. For such maps, we perform a numerical study of the behaviour of metric entropy as a function of the parameter. The behaviour of entropy is known to be quite regular for parameters for which a matching condition on the orbits of the endpoints holds. We give a detailed description of the set M where this condition is met: it consists of a countable union of open intervals, corresponding to different combinatorial data, which appear to be arranged in a hierarchical structure. Our experimental data suggest that the complement of M is a proper subset of the set of bounded-type numbers, hence it has measure zero. Furthermore, we give evidence that the entropy on matching intervals is smooth; on the other hand, we can construct points outside of M on which it is not even locally monotone.

References (20)

  1. A. Broise, Transformations dilatantes de l'intervalle et théorèmes limites, Astérisque 238 (1996) 1-109
  2. M. Charves, Démonstration de la périodicité des en fractions continues, engendrées par les racines d'une èquation du deuxième degré., Bull. Sci. Math. (2), 1, 41-43 (1887).
  3. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1994
  4. H. Hennion, Sur un Théorème Spectral et son Application aux Noyaux Lipchitziens, Proc. of the American Mathematical Society, Vol. 118, No. 2 (Jun., 1993), 627-634
  5. G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), 313-333
  6. G. Keller, C. Liverani, Stability of the Spectrum for Transfer Opera- tors, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) vol. 28 (1999), 141-152
  7. C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39
  8. Y. Hartono, C. Kraaikamp, A note on Hurwitzian numbers, Tokyo J. Math. 25 (2002), no. 2, 353-362.
  9. L. Luzzi, S. Marmi, On the entropy of Japanese continued frac- tions, Discrete and continuous dynamical systems, 20 (2008), 673-711, arXiv:math.DS/0601576v2
  10. A. Cassa, P. Moussa, S. Marmi, Continued fractions and Brjuno func- tions, J. Comput. Appl. Math. 105 (1995), 403-415
  11. H. Nakada, Metrical theory for a class of continued fraction transforma- tions and their natural extensions, Tokyo J. Math. 4 (1981), 399-426
  12. H. Nakada, R. Natsui, The non-monotonicity of the entropy of α- continued fraction transformations, Nonlinearity 21 (2008), 1207-1225
  13. V.A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499-530; English translation: Amer. Math. Soc. Transl. (2) 39 (1964), 1-36
  14. M. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80
  15. F. Schweiger, Ergodic theory of fibred systems and metric number theory, Oxford Sci. Publ. Clarendon Press, Oxford, 1995
  16. G.Tiozzo The entropy of α-continued fractions: analytical results, preprint
  17. M. Viana, Stochastic Dynamics of Deterministic Systems, Lecture Notes XXI. Braz. Math. Colloq. IMPA, Rio de Janeiro, 1997
  18. R. Zweimüller, Ergodic structure and invariant densities of non- Markovian interval maps with indifferent fixed points, Nonlinearity 11 (1998), 1263-1276
  19. Dipartimento di Matematica, Università di Pisa, Largo Bruno Pon- tecorvo 5, 56127 Pisa, Italy. e-mail: carminat@dm.unipi.it Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy. e- mail: s.marmi@sns.it
  20. Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy. e- mail: a.profeti@sns.it Department of Mathematics, Harvard University, 1 Oxford St, Cam- bridge MA 02138, U.S.A. e-mail: tiozzo@math.harvard.edu