On entropy of patterns given by interval maps
1999, Fundamenta Mathematicae
Abstract
Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in [11].
References (26)
- R. L. A d l e r, A. G. K o n h e i m and M. H. M c A n d r e w, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
- L. A l s e d à, J. L l i b r e and M. M i s i u r e w i c z, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993.
- -, -, -, Periodic orbits of maps of Y , Trans. Amer. Math. Soc. 313 (1989), 475-538.
- S. B a l d w i n, Generalizations of a theorem of Sharkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-127.
- A. B e r m a n and R. J. P l e m m o n s, Non-Negative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- L. S. B l o c k and W. A. C o p p e l, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
- L. B l o c k, J. G u c k e n h e i m e r, M. M i s i u r e w i c z and L. S. Y o u n g, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
- A. B l o k h, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type order for patterns on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1-14.
- -, Functional rotation numbers for one dimensional maps, Trans. Amer. Math. Soc. 347 (1995), 499-514.
- -, On rotation intervals for interval maps, Nonlinearity 7 (1994), 1395-1417.
- A. B l o k h and M. M i s i u r e w i c z, Entropy of twist interval maps, Israel J. Math. 102 (1997), 61-99.
- J. B o b o k and M. K u c h t a, X-minimal patterns and generalization of Sharkovskii's theorem, Fund. Math. 156 (1998), 33-66.
- J. B o b o k and I. M a r e k, On asymptotic behaviour of solutions of difference equa- tions in partially ordered Banach spaces, submitted to Positivity.
- R. B o w e n, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414.
- E. M. C o v e n and M. C. H i d a l g o, On the topological entropy of transitive maps of the interval , Bull. Austral. Math. Soc. 44 (1991), 207-213.
- M. D e n k e r, Ch. G r i l l e n b e r g e r and K. S i g m u n d, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976.
- T. F o r t, Finite Difference and Difference Equations in the Real Domain, Oxford Univ. Press, 1965.
- A. K a t o k and B. H a s s e l b l a t t, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge Univ. Press, 1995.
- M. M i s i u r e w i c z, Minor cycles for interval maps, Fund. Math. 145 (1994), 281- 304.
- M. M i s i u r e w i c z and Z. N i t e c k i, Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc. 456 (1990).
- M. M i s i u r e w i c z and W. S z l e n k, Entropy of piecewise monotone mappings, Stu- dia Math. 67 (1980), 45-63.
- W. P a r r y, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378.
- W. R u d i n, Real and Complex Analysis, McGraw-Hill, New York, 1974.
- P. Š t e f a n, A theorem of Sharkovskii on the coexistence of periodic orbits of contin- uous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.
- KM FSv ČVUT Thákurova 7
- 29 Praha 6, Czech Republic E-mail: erastus@mbox.cesnet.cz Received 16 May 1996; in revised form 27 October 1997, 20 October 1998 and 13 March 1999