Academia.eduAcademia.edu

Outline

Negation and Paraconsistent Logics

2011, Logica Universalis

https://doi.org/10.1007/S11787-011-0029-2

Abstract

Does there exist any equivalence between the notions of inconsistency and consequence in paraconsistent logics as is present in the classical two valued logic? This is the key issue of this paper. Starting with a language where negation ($${\neg}$$) is the only connective, two sets of axioms for consequence and inconsistency of paraconsistent logics are presented. During this study two

References (16)

  1. Arruda, I.A.: Aspects of the historical development of paraconsistent logic. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 99-129. Philosophia, München (1989)
  2. Avron, A.: Natural 3-valued logics: characterization and proof theory. J. Symb. Log. 56(1), 276-294 (1991)
  3. Carnielli, A.W., Marcos, J.: A taxonomny of C systems. In: Carnielli, W.A., Coniglio, M.E., D'Ottavino, I.M.L. (eds.) Paraconsistency-the logical Way to the Inconsistent Lecture Notes in Pure Applied and Mathematics, vol. 228, pp. 1-94. Marcel Dekker, New York (2002)
  4. Carnielli, A.W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, pp. 1-93. Kluwer Academic Publishers, Netherlands (2003)
  5. Chakraborty, M.K., Basu, S.: Graded consequence and some metalogical notions generalized. Fundamenta informaticae 32, 299-311 (1997)
  6. Dubois, D., Prade, H.: Possibilistic logic, a retrospective and prospective view. Fuzzy Sets Syst. 144(1), 3-23 (2004)
  7. Michael Dunn, J.: Star and perp: two treatments of negation. Philos. Perspect. Lang. Log. 7, 331-357 (1993)
  8. Michale Dunn, J.: A comparative study of various model theoretic treatments of negation: a history of formal negation. In: Gabbay, D.M., Wansing H. (eds.) What is Negation? pp. 23-51 (1999)
  9. Michael Dunn, J., Restall, G.: Relevance logic. In: Gabbay, D., Guenthner F. (eds.) Handbook of Philosophical Logic, vol. 6, 2nd edn, pp. 1-136. Kluwer Aca- demic Publishers, Dordrecht (2002)
  10. Gentzen, G.: Investigations into logical deductions. In: The Collected Papers of Gentzen, G., Szabo, M.E. (eds.), pp. 68-131. North Holland Publications, Amsterdam (1969)
  11. Goswami, S.: Relevant logic: philosophy and applications. Ph.D thesis submitted at Jadavpur University (2009)
  12. Restall, G.: Laws of non-contradiction, laws of the excluded middle, and logics. In: Priest, G., Beall, J.C., Garb-Armour, J.C. (eds.) The Law of Non-Contra- diction, pp. 73-84. Oxford University Press, New York (2004)
  13. Priest, G., Routley, R.: A preliminary history of paraconsistent and dialethic approaches. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 3-75. Philosophia, München (1989)
  14. Surma, S.J.: The growth of logic out of the foundational research in mathematics. In: Agazzi, E. (ed.) Modern Logic-A Survey, pp. 15-33. D. Reidel Publishing co., Dordrecht (1981)
  15. Tarski, A.: Fundamentale begriffe der metodologie der deduktiven wissenschaf- ten, monatshefte fuer mathematik und physik. XXXVII, 361-404 (1930)
  16. Tarski, A.: Methodology of deductive sciences. In: Logic, Semantics, Mathematics, pp. 60-109. Clarendon Press, Oxford (1956)