Academia.eduAcademia.edu

Outline

Fully automatic mesh generator for 3D domains of any shape

1990, IMPACT of Computing in Science and Engineering

https://doi.org/10.1016/0899-8248(90)90012-Y

Abstract

Devoted to mesh generation of 3D domains, this paper examines the different approaches actually in progress. A new method is introduced which can be seen as a variant of the Delaunay-Voronoi' tesselation coupled with a control of the given boundary used to define the domain under consideration. 0 1990 Academic PISS, hc.

References (25)

  1. A. Aho, J. Hopcroft, and J. Ullman, Data Structures anddlgorithms, Addison-Wesley, Read- ing, Ma (1983).
  2. T. J. Baker, Automatic mesh generation for complex three-dimensional regions using a con- strained Delaunay triangulation, Engrg. Comput. 5, 16 I-175 ( 1989).
  3. M. Bemadou et al., MODULEF: Une bibliotheque modulaire dZlkmentsfinis. INRIA ( 1988).
  4. J. C. Cavendish, D. A. Field, and W. H. Frey, An approach to automatic 3D finite element mesh generation, Znt. J. Methods Engrg. 21 ( 1985).
  5. P. G. Ciarlet, The Finite Element Methodfor Elliptic Problem, North-Holland, Amsterdam, (1978).
  6. J. L. Coulomb, Maillages 2D et 3D: Experimentation de la triangulation de Delaunay, Con- ference on "Automated mesh generation and adaption," Grenoble, 1987.
  7. P. R. Eiseman, Adaptive grid generation, Comput. Methods Appl. Mech. Engrg. 64 (1987).
  8. P. L. George, MODULEF: Generation automatique de maillage, Collection didactique INRIA 2(1988).
  9. P. L. George, Mailleur 3D par dtcoupage structure d'elements grossiers, RR INRIA 990 (1989).
  10. P. L. George and A. Golgolab, Mailleur 3D en topologie cylindrique, RT INRIA 100 ( 1988).
  11. P. L. George, F. Hecht, and E. Saltel, Tetraedtisation automatique et respect de la frontiere.
  12. RR INRIA 835 (1988).
  13. P. L. George, F. Hecht, and E. Sahel, Automatic mesh generation with specified boundary. Cornpu~. Methods Appl. Mech. Engrg., to appear.
  14. P. L. George, F. Hecht, and E. Saltel, Constraint of boundary and automatic mesh generation. In Numerical Grid Generation in Computational Fluid Mechanics, Miami ( 1988).
  15. P. L. George and F. Hermeline, Maillage de Delaunay d'un polyedre convexe en dimension d: Extension a un polytdre quelconque, Note CEA-N-90 ( 1989).
  16. P. L. George, F. Hecht, and E. Sahel. Automatic 3D mesh generation with prescribed meshed boundaries, IEEE Trans. Magn., to appear.
  17. A. Golgolab, private communication ( 1989)
  18. F. Hermeline, Une methode automatique de maillage en dimension N, Thesis, Universite Paris6 (1980).
  19. F. Hermeline, Triangulation automatique d'un polyedre en dimension N, RAIRO numerical analysis 16 (1982).
  20. A. Jameson, T. J. Baker, and N. P. Weatherill, Calculation of inviscid transonic flow over a complete aircraft, AIAA 24fh Aerospace Sciences Meeting, Reno, NV ( 1986).
  21. R. Lijhner and P. Parikh, Generation of 3-D unstructured grids by the advancing front method, AIAA 24th Aerospace Sciences meeting, Reno NV ( 1988).
  22. 1. J. Peraire, J. Peiro, L. Format&a, K. Morgan, and 0. C. Zienkiewicz, Finite element Euler computations in three dimensions, Inf. J. Numer. Methods in Engrg. 26 ( 1988).
  23. A. Perronnet, Tetraedtisation d'un objet multi-materiaux ou de I'exterieur d'un object, R LAN I89 88005, Universite Paris 6 (1988).
  24. J. Y. Talon, Algotithmes d'amelioration de maillages pour elements finis en 2 et 3 dimensions, Conference on Automated Mesh Generation and Adaptation, Grenoble ( 1987)
  25. J. F. Thompson, A general three dimensional elliptic grid generation system on a composite block-structure, Comput. Methods Appl. Mech. Engrg. 64, 1987.