Abstract
Research on the biomechanics of animal and human locomotion provides insight into basic principles of locomotion and respective implications for construction and control. Nearly elastic operation of the leg is necessary to reproduce the basic dynamics in walking and running. Elastic leg operation can be modelled with a spring-mass model. This model can be used as a template with respect to both gaits in the construction and control of legged machines. With respect to the segmented leg, the humanoid arrangement saves energy and ensures structural stability. With the quasi-elastic operation the leg inherits the property of self-stability, i.e. the ability to stabilize a system in the presence of disturbances without sensing the disturbance or its direct effects. Self-stability can be conserved in the presence of musculature with its crucial damping property. To ensure secure foothold visco-elastic suspended muscles serve as shock absorbers. Experiments with technically implemented leg models, which explore some of these principles, are promising.
Key takeaways
AI
AI
- Quasi-elastic leg operation is essential for dynamic locomotion and self-stability in both animals and legged machines.
- Spring-mass models effectively describe walking and running dynamics, aiding in the construction of legged systems.
- Self-stability reduces control demands, allowing legged robots to navigate disturbances without direct sensing.
- Segmentation in humanoid robots enhances energy efficiency and structural stability during locomotion.
- Experimental findings show that compliant, muscle-like actuators improve shock absorption and response to unexpected loads.
References (59)
- Alexander, R. McN 1995 Leg design and jumping technique for humans, other vertebrates and insects. Phil. Trans. R. Soc. B 347, 235-248.
- Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, J., Mc-Mordie, D., Saranli, U., Full, R. & Koditschek, D. 2001 RHex: a biologically inspired hexapod runner. Auton. Robots 11, 207-213. (doi:10.1023/A:1012426720699)
- Blickhan, R. 1989 The spring-mass model for running and hopping. J. Biomech. 22, 1217-1227. (doi:10.1016/0021-9290(89)90224-8)
- Blickhan, R. & Full, R. J. 1993 Similarity in multi-legged locomotion: bouncing like a monopod. J. Comp. Phys. A 173, 509-517.
- Blickhan, R., Wagner, H. & Seyfarth, A. 2003 Brain or muscles. In Recent research developments in biomechanics 1 (ed. S. G. Pandalai), pp. 215-245. Thiru-anantha-puram (Trivandrum): Transw. Res. Netw.
- Cavagna, G., Saibene, F. & Margaria, R. 1964 Mechanical work in running. J. Appl. Physiol. 19, 249-256.
- Cavagna, G., Heglund, N. & Taylor, C. 1977 Mechanical work in terrestral locomotion: two basic mechanisms for minimising energy expenditure. Am. J. Physiol. 233, 243-261.
- Coleman, M. & Ruina, A. 1998 An uncontrolled walking toy that cannot stand still. Phys. Rev. Lett. 80, 3658-3661. (doi:10.1103/PhysRevLett.80.3658)
- Coleman, M., Chatterjee, A. & Ruina, A. 1997 Motions of a rimless spoked wheel: a simple three- dimensional system with impacts. Dyn. Stab. Syst. 12, 139-159.
- Coleman, M. J., Garcia, M., Mombaur, K. & Ruina, A. 2001 Prediction of stable walking for a toy that cannot stand. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 64, 022901.
- Cruse, H., Kindermann, T., Schumm, M., Dean, J. & Schmitz, J. 1998 Walknet-a biologically inspired network to control six-legged walking. Neural Netw. 11, 1435-1447. (doi:10.1016/ S0893-6080(98)00067-7)
- Farley, C., Glasheen, J. & McMahon, T. A. 1993 Running springs: speed and animal size. J. Exp. Biol. 185, 71-86.
- Ferris, D. & Farley, C. 1997 Interaction of leg stiffness and surface stiffness during human hopping. J. Appl. Physiol. 82, 15-22.
- Ferris, D. P., Louie, M. & Farley, C. T. 1998 Running in the real world: adjusting leg stiffness for different surfaces. Proc. R. Soc. B 265, 989-994. (doi:10.1098/rspb.1998.0388)
- Fischer, M. & Blickhan, R. 2006 The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization. A review. J. Exp. Zool. 305A, 935-952. (doi:10.1002/jez.a.333)
- Full, R. J. & Koditschek, D. E. 1999 Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325-3332.
- Full, R. J., Blickhan, R. & Ting, L. 1991 Leg design in hexapedal runners. J. Exp. Biol. 158, 369-390.
- Full, R. J., Kubow, T., Schmitt, J., Holmes, P. & Koditschek, D. 2002 Quantifying dynamic stability and maneuverability in legged locomotion. Integr. Comp. Biol. 42, 149-157. (doi:10. 1093/icb/42.1.149)
- Garcia, M., Chatterjee, A., Ruina, A. & Coleman, M. 1998 The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120, 281-288.
- Georgopoulos, A. P., Taira, M. & Lukashin, A. V. 1993 Cognitive neurophysiology of the motor cortex. Science 260, 47-52. (doi:10.1126/science.8465199)
- Geyer, H. 2005 Simple models of legged locomotion based on compliant limb behavior. Ph.D. thesis, Faculty of Social-and Behavioural Sciences, Friedrich-Schiller-Universita ¨t, Jena.
- Geyer, H., Seyfarth, A. & Blickhan, R. 2003 Positive force feedback in bouncing gates. Proc. R. Soc. B 270, 2173-2183. (doi:10.1098/rspb.2003.2454)
- Geyer, H., Seyfarth, A. & Blickhan, R. 2005 Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232, 315-328.
- Geyer, H., Seyfarth, A. & Blickhan, R. 2006 Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. B 273, 2861-2867. (doi:10.1098/rspb.2006.3637)
- Ghigliazza, R., Altendorfer, R., Holmes, P. & Koditschek, D. 2003 A simply stabilized running model. SIAM J. Appl. Dyn. Syst. 2, 187-218. (doi:10.1137/S1111111102408311)
- Gu ¨nther, M. & Blickhan, R. 2002 Joint stiffness of the ankle and the knee in running. J. Biomech. 35, 1459-1474. (doi:10.1016/S0021-9290(02)00183-5)
- Gu ¨nther, M., Sholukha, V. A., Keßler, D., Wank, V. & Blickhan, R. 2003 Dealing with skin motion and wobbling masses in inverse dynamics. J. Mech. Med. Biol. 3, 309-335. (doi:10.1142/ S0219519403000831)
- Gu ¨nther, M., Keppler, V., Seyfarth, A. & Blickhan, R. 2004 Human leg design: optimal axial alignment under constraints. J. Math. Biol. 48, 623-646. (doi:10.1007/s00285-004-0269-3)
- Gu ¨nther, M., Mu ¨ller, O. & Blickhan, R. Submitted. Quiet human stance: multi-segment dynamics in disguise.
- Iida, F. 2005 Cheap design approach to adaptive behavior: walking and sensing through body dynamics. In Proc. AMAM 2005, Ilmenau, 26-30 September (ed. T. U. Ilmenau Rektor). Ilmenau, Germany: Isle Verlag.
- Jindrich, D. L. & Full, R. 2002 Dynamic stabilization of rapid hexapedal locomotion. J. Exp. Biol. 205, 2803-2823.
- Kubow, T. M. & Full, R. J. 1999 The role of the mechanical system in control: a hypothesis of self- stabilization in hexpedal runners. Phil. Trans. R. Soc. B 354, 849-861. (doi:10.1098/rstb.1999.
- Lee, C. & Farley, C. 1998 Determinants of the center of mass trajectory in human walking and running. J. Exp. Biol. 201, 2935-2944.
- Loeb, G. E. 1995 Control implications of musculoskeletal mechanics. Ann. Int. Conf. IEEE-EMBS 17, 1393-1394.
- Maier, K. D., Glauche, V., Beckstein, C. & Blickhan, R. 2000 Controlling fast spring-legged locomotion with artificial neural networks. Soft Comput. 4, 157-164. (doi:10.1007/ s005000000041)
- Margaria, R., Cerretelli, P., Aghemo, P. & Sassi, G. 1963 Energy cost of running. J. Appl. Physiol. 18, 367-370.
- McGeer, T. 1990 Passive dynamic walking. Int. J. Robot. Res. 9, 62-82.
- McGeer, T. 1992 Principles of walking and running. In Mechanics of animal locomotion. Advances in comparative and environmental physiology 11 (ed. R. McN Alexander), pp. 114-140. Heidelberg, Germany: Springer.
- McGeer, T. 1993 Dynamics and control of bipedal locomotion. J. Theor. Biol. 163, 277-314. (doi:10.1006/jtbi.1993.1121)
- McMahon, T. A. & Cheng, G. C. 1990 The mechanics of running: how does stiffness couple with speed? J. Biomech. 23, 65-78. (doi:10.1016/0021-9290(90)90042-2)
- Pfeiffer, F. 2005 Entwurf und Realisierung einer zweibeinigen Laufmaschine. In Autonomes Laufen (ed. F. Pfeiffer & H. Cruse), pp. 121-146. Berlin, Germany: Springer.
- Prochazka, A., Gillard, D. & Bennett, D. 1997 Positive force feedback control of muscles. J. Neurophys. 77, 3226-3236.
- Raibert, M. H. 1986 Legged robots that balance. Cambridge, UK: MIT Press.
- Ringrose, R. P. 1997 Self-stabilizing running. Ph.D. thesis, Massachusetts Institute of Technology.
- Ruina, A. 1998 Non-holonomic stability aspects of piecewise holonomic systems. Rep. Math. Phys. 42, 91-100. (doi:10.1016/S0034-4877(98)80006-2)
- Ruina, A. Bertram, J. E. A. & Srinivasan, M. 2005 A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. Preprint.
- Saranli, U., Buehler, M. & Koditschek, D. 2001 RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20, 616-631. (doi:10.1177/02783640122067570)
- Saunders, J., Inman, V. & Eberhart, H. 1953 The major determinants in normal and pathological gait. J. Bone Joint Surg. 35, 543-558.
- Seyfarth, A. 2005 Knee flexion in human walking. In Proc. AMAM 2005, Ilmenau, 26-30 September (ed. T. U. Ilmenau Rektor), pp. 26-30. Ilmenau, Germany: Isle Verlag.
- Seyfarth, A., Gu ¨nther, M. & Blickhan, R. 2001 Stable operation of an elastic three-segment leg. Biol. Cybern. 84, 365-382. (doi:10.1007/PL00007982)
- Seyfarth, A., Geyer, H., Gu ¨nther, M. & Blickhan, R. 2002 A movement criterion for running. J. Biomech. 35, 649-655. (doi:10.1016/S0021-9290(01)00245-7)
- Seyfarth, A., Geyer, H. & Herr, H. M. 2003 Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547-2555. (doi:10.1242/jeb.00463)
- Shik, M. L., Severin, F. V. & Orlovskii, G. N. 1966 Control of walking and running by means of electric stimulation of the midbrain. Biofyzika 11, 659.
- Thorstensson, A. & Roberthson, H. 1987 Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiol. Scand. 131, 211-214.
- van Soest, A. & Bobbert, M. 1993 The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69, 195-204. (doi:10.1007/BF00198959)
- Wagner, H. & Blickhan, R. 1999 Stabilizing function of skeletal muscles: an analytical investigation. J. Theor. Biol. 199, 163-179. (doi:10.1006/jtbi.1999.0949)
- Wagner, H. & Blickhan, R. 2003 Stabilizing function of antagonistic neuromusculoskeletal systems: an analytical investigation. Biol. Cybern. 89, 71-79.
- Wakeling, J. M. & Nigg, B. M. 2001 Modification of soft tissue vibrations in the leg by muscular activity. J. Appl. Physiol. 90, 412-420.
- Witte, H., Biltzinger, J., Hackert, R., Reich, C., Schilling, N. & Fischer, M. S. 2002 Torque patterns of the limbs of small therian mammals during locomotion on flat ground. J. Exp. Biol. 205, 1339-1353.
R. Blickhan







