Descent and Forms of Tensor Categories
2011, International Mathematics Research Notices
https://doi.org/10.1093/IMRN/RNR119Abstract
We develop a theory of descent and forms of tensor categories over arbitrary fields. We describe the general scheme of classification of such forms using algebraic and homotopical language, and give examples of explicit classification of forms. We also discuss the problem of categorification of weak fusion rings, and for the simplest families of such rings, determine which ones are categorifiable.
References (18)
- A.A. Albert and H. Hasse, A determination of all normal division algebras over an algebraic number field, Trans. Amer. Math. Soc., 34 (1932).
- E. Artin and J. Tate, Class field theory, Addison-Wesley, New York, 1968.
- N. Blackburn and B. Huppert, Finite groups III, Grundlehren der Mathe- matischen Wissenschaften, 243, Berlin-New York, Springer-Verlag, 1982.
- R. Brauer, H. Hasse and E. Noether, Beweis eines Hauptsatzes in der Theorie der Algebren, J. Reine Angew. Math., 167 (1932) 399-404.
- V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, On braided fusion categories I, Selecta Mathematica New Series, 16 (2010), 1-119.
- P. Deligne and J. Milne, Tannakian Categories, Lecture Notes in Mathe- matics, 900 (1982) 101-228.
- K. Eisenträger, The theorem of Honda and Tate, http://www.math.psu.edu/eisentra/
- P. Etingof, S. Gelaki and V. Ostrik, Classification of fusion categories of dimension pq, International Mathematics Research Notices, 57 (2004), 3041-3056.
- P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. of Math. 162 (2005), 581-642.
- P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory. With an appendix by Ehud Meir. Quantum Topol. 1 (2010), no. 3, 209-273.
- S. Gelaki and D. Nikshych, Nilpotent fusion categories, Advances in Math- ematics 217 (2008) 1053-1071.
- Ph. Gille, T. Szamuely, Central Simple Algebras and Galois Cohomol- ogy, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2006.
- M. Merkurjev, K 2 of fields and the Brauer group. Proc. Boulder Confer- ence on K-theory, (1983).
- M. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Izv. Akad. Nauk SSSR 46, (1982) 1011- 1046.
- S. Morrison and N. Snyder, Non-cyclotomic fusion categories, arXiv:1002.0168.
- V. Ostrik, Fusion categories of rank 2, Math. Res. Lett. 10 (2003), 177- 183.
- D. Tambara and S. Yamagami, Tensor categories with fusion rules of self- duality for finite abelian groups, J. Algebra 209 (1998), no. 2, 692-707.
- J. Thornton, On braided near-group categories, preprint (to appear).